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Echogen Power Systems background

• Founded in 2007
• Mission: To develop and commercialize a better 

exhaust and waste heat recovery power system 
using CO2 as the working fluid

• First company to deliver a commercial sCO2 power 
cycle

• Developing a CO2-
based PTES/ETES
system
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Pumped Thermal Energy Storage basics
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Heat Pump Cycle
COP = Qh/Echg

Ideal COP = 1/(1-Tc/Th)

Overall Process
RTE = Egen/Echg

= COP x Efficiency

Power Cycle
Efficiency = Egen/Qh

Ideal efficiency = 1-Tc/Th

Ideal cycle RTE = COPCarnot x ηCarnot = 100%
Non-ideal processes result in RTE ~60%, even at modest temperature ratio
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ARPA-E DAYS Program – ETES lab-scale system

LTR

HTR

~200 kWth system, including both 
charging and generating cycles

Initial build
• 2-tank heat transfer fluid HTR
• Ice slurry LTR

Commissioning complete

Initial round of testing complete

Gen pumpCharge compressor

ISG Recuperator
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Key performance criteria

• Turbomachinery 
performance

• Approach 
temperatures

• Pressure drops
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Same song, different verse

• Cycle performance boils down to:
• Turbomachinery performance
• Heat exchanger characteristics – UA and ∆P
• Cycle design – Impacts ∆Τapr

• System cost depends on:
• Heat exchanger characteristics – UA and ∆P = f($)
• Cycle design
• Reservoir materials and containment structures
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Economics dominate use cases

Lower Capex, no augmentation costs => Lower LCOS

Charge/generate
equipment costs

Reservoir costs
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Key issue – determining / modeling customer value

• Model developed in StorageVET (EPRI tool) 
for several use cases, based on short-term 
forecasts of localized marginal pricing

• Key result is relative insensitivity of arbitrage 
revenue to RTE

• Not necessarily a general result, depends
heavily on local pricing and renewable 
penetration assumptions

• Non-arbitrage revenue key to acceptable IRR, 
but forecasting is difficult

• DOE help with economic modeling and
pricing assumptions would be welcome!
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Closing thoughts

• Performance is important, but costs (capital and operating) matter more

• Low reservoir cost/kWh key to enabling marketability of long-duration 
energy storage

• Heat exchanger cost/UA is the strongest lever on trading cost vs 
performance for the charging/generating equipment

• Defining markets, available revenue streams, and electricity price 
forecasting are critical to both design and marketing of PTES systems



Contact: Timothy Held, Ph.D. (CTO) theld@echogen.com
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