GRCTHINK

PTES Turbomachinery

Douglas Hofer GE Research

November 17, 2020

High Temperature Compressors Exist

Turbomachinery Design and Cost

- Can a 100MW 550°C compressor be developed in two years, below \$500/kW (not nickel), above 85% isentropic efficiency?
 - What are the relative challenges of ideal gas vs CO2 fluids?
 - What subcomponent development is needed? Dry gas seals, bearings, etc
 - What other performance metrics should be set and tested?

\rightarrow Yes,

Using existing aircraft engine technology

Aeroderivative based on GE90-115B

Performance Assessment

https://www.ge.com/content/dam/gepower-pgdp/global/en_US/documents/product/gas-power-systems-product-catalog-2019.pdf

LM9000							
Compressor							
PR	Effy	Flow	Texit	Power			
[-]	[-]	[kg/s]	[C]	[MW]			
33.5	0.85	182.8	600.2	107.5			
Storage Heat Exchanger							
Tout	DP/P	Qin		COP			
[C]	[%]	[MW]		[-]			
300.0	3	55.1		1.15			
Turbine							
PR	Effy	Flow	Texit	Power			
[-]	[-]	[kg/s]	[C]	[MW]			
32.5	0.9	182.8	-25.0	59.7			

LM9000 compressor meets PTES goals

- Texit = 600C
- Net power 48 MW per machine (2x for 100 MW)

LM9000 for PTES Development Needs

Compressor Exit Diffuser and Volute

• Collect hot air and move to PTES heat exchanger

New low-temperature power turbine

- 300C Turbine Inlet Temp
- Uncooled, stainless steel
- Based on Steam Turbine technology to minimize NRE and product cost

Casing, Bearings, and Sumps for Modified Design

Gearbox to couple Synchronous Drive Motor

- 3600/1800 RPM motor for 60 Hz applications
- Drive both high speed core and low speed booster
- Integrate turbine with HS or LS shaft (TBD)

Do we need a turbine?

Yes -

- COP < 1 without a turbine
- Resistive heat lower CAPEX and higher efficiency than throttle

Scaling Up - 7HA.02

7HA.02							
Compressor							
PR	Effy	Flow	Texit	Power			
[-]	[-]	[kg/s]	[C]	[MW]			
23.1	0.85	730	507.1	360.9			
Storage Heat Exchanger							
Tout	DP/P	Qin		COP			
[C]	[%]	[MW]		[-]			
300.0	0.03	151.9		1.10			
Turbine							
PR	Effy	Flow	Texit	Power			
[-]	[-]	[kg/s]	[C]	[MW]			
22.4	0.9	730	-3.6	222.6			

500 C Compressor Discharge

138 MW Net Input @ 3600 RPM

• No gearbox required

 $COP = 1.1 \rightarrow 150 \text{ MW Heat Input}$

Simple Single Shaft Architecture

Working Fluid

CO₂ Based Heat Pump

- Requires PR=131 to achieve 550C
- 300 bar exit pressure
 - High density 183 kg/m³
- Only minor real gas effects
- Closed cycle requires low T HX

Air Based Heat Pump

- Requires PR=31 to achieve 550C
- 31 bar exit pressure
 - Low density 12.7 kg/m³
- Open cycle no low T HX

Conclusions

High Discharge Temperature Air Compressors Currently Used in Aircraft Engines

- High PR for Cycle Efficiency without Bottoming Cycle
- Largest engines are still < 100 MW scale
- Repurposed aeroderivative shortest path to PTES application @ 550C
- Requires development of custom gearbox, turbine, and bearings

Heavy Duty Gas Turbines Provide Scale

- Lower PR, optimized for combined cycle
- Compressor discharge up to 500C in HA.02
- Simple single 3600 RPM shaft
- 140 MW in a single machine
- Requires development of a custom turbine and bearings.

CO₂ Requires High PR to Achieve 550C

- PR > 100 or staged system
- High discharge pressure results in small (but thick) pipes

