Workshop Unlocking Solar Thermochemical Potential: Leveraging CSP Experience for Solar Thermochemistry

Professor James Klausner
Department of Mechanical Engineering
Michigan State University

Pioneers of High Temperature Thermochemical Engineering—Glass Makers

Basic Tools for High Temperature Thermochemistry

- A high temperature furnace
- A reactor to contain reactants (crucible)
 Soda Lime Glass: SiO₂ (sand), Na₂CO₃ (soda ash), CaCO₃ (limestone)
- Energy to drive phase change and endothermic reactions (often involving metal oxides)

 $SiO_{2,solid} \rightarrow SiO_{2,liquid} (+\Delta h)$ $CaCO_3 \rightarrow CaO+CO_2 (+\Delta h)$ $Na_2CO_3 \rightarrow Na_2O+CO_2 (+\Delta h)$

One Minute Primer on Thermochemistry

Given Reaction: $\upsilon_A A(\alpha) + \upsilon_B B(\beta) \rightarrow \upsilon_C C(\alpha) + \upsilon_D D(\beta)$ A,B,C,D are components; α,β are phases

Duhem Theorem: equilibrium states of a closed system whose initial mass is known, determined by two independent intrinsic variables, typically temperature and pressure for thermochemical systems

Change in system Gibbs free energy:

$$\Delta G_r(T) = (\upsilon_C \Delta G^{\circ}_{f(C)} + \upsilon_D \Delta G^{\circ}_{f(D)})_{products} - (\upsilon_A \Delta G^{\circ}_{f(A)} + \upsilon_B \Delta G^{\circ}_{f(B)})_{reactants}$$

 $\Delta G^{\circ}_{f(A)}$ Free energy of formation

Affinity of reaction: $\Delta G_r < 0$ in order for reaction to proceed in the forward direction

Consider reaction: $CaCO_3 \rightarrow CaO + CO_2$ ($\Delta h = +178 \text{ KJ/mol} - -$

Endothermic) (Ideally reversible reaction)

 $CaO+CO_2 \rightarrow CaCO_3 (\Delta h=-178 \text{ KJ/mol} -$

Exothermic)

Figure 2 Reaction equilibrium constant for CaCO₃ decomposition.

The Capture and Utilization of Solar Energy to Synthesize Carbon Neutral Fuel

Basic Chemistries for Solar Fuel Synthesis

Two-step water and CO_2 splitting to H_2/CO (syngas)

Reduction: $CeO_2 \rightarrow CeO_{2-\delta} + \frac{\delta}{2}O_2$ $T_{reactor} \sim 1450 \,^{\circ}C$

Oxidation:

$$Fe_3O_4 \rightarrow 3FeO + \frac{1}{2}O_2 T_{reactor} \sim 1100 °C$$

Some Materials studied in the solar thermochemistry community

$$ZnO \rightarrow Zn + \frac{1}{2}O_2$$

Zinc oxide (volatile)

$$ZnO \rightarrow Zn + \frac{1}{2}O_2$$
 Magnetite (solid state)

$$CoFe_2O_4 \rightarrow CoO + 2FeO + \frac{1}{2}O_2$$
 Cobalt Ferrite (solid state)

$$CoFe_2O_4 \rightarrow CoO + 2FeO + \frac{1}{2}O_2$$

Ceria (solid state)

$$ABO_3 \to ABO_{3-\delta} + \frac{\delta}{2}O_2$$
 (e.g., $Sr_x La_{1-x} Mn_y Al_{1-y} O_3$)

Perovskite (solid state)

$$MgFe_2O_4 + \epsilon MgO \rightarrow (1+\epsilon)MgO + xFeO + (2-x)FeO_{1.5} + \frac{x}{4}O_2$$

Magnesioferrite (solid state)

Basic Concept of Cyclical Redox Reactions Used for Solar Fuel Synthesis

Two-Step Cyclical Metal Oxide Reactions

High Temperature Solar Thermochemical Reactor Concepts

University of Florida Reactor

High Temperature Solar Thermochemical Reactor Concepts

University of Florida Solar Fuel Reactor in Operation

High Temperature Solar Thermochemical Reactor Concepts

Niigata University Beam Down Fluidized Bed Reactor

CO₂-neutral transportation fuels from sunlight and air

Scalability

Solar Reactor Technology 5 kW → 50 kW

Concentrated Solar Radiation

Reticulated Porous Ceria

30 mm

10 mm

H₂O, CO₂

ARENA Thermochemical Hydrogen / CSIRO (AU), Niigata University, IAE (Japan)

Demonstration at 100-kW_{th} Miyazaki BD system, Japan

Pilot System

- Conversion of CSIRO 500-kW_{th} Field 1 to beam down configuration
- Construction of NU's Fluidized bed system
- Total Budget AUD\$ 4m
- 2018 2021

ARENA 新潟大学 LAE -般園法人エネルギー総合工学研究所

Use Reduced Metal Oxide as a Solid State Solar Fuel (SoFuel)

- 1. Concentrated solar
- Discharged(Oxidized) SoFuel
- Discharged SoFuel feed hopper
- Charged (Reduced)SoFuel
- Charged SoFuel collection tank
- SoFuel flow control mechanism
- Oxygen depleted air in (from Sofuel combustor)
- Oxygen enriched air out (to Sofuel combustor)
- (a) Recuperation zone
- (b) Reduction zone
- (c) Quenching zone

Advantages

- Fuel created through thermal reduction; no intermediate reaction potentially high conversion efficiency (50%)
- Fuel synthesis is continuous; decouples solar field from power block
- Metal oxide is recyclable
- •Fuel and gas in and out of the reactor is at low temperature; all handling is done at low temperature

Heat recuperation is built into the design

SoFuel Reactor Design is Highly Scalable

Mg-Mn-O is Excellent Candidate Solid Fuel Material

- Excellent reactive stability; no loss in reactivity over 100 cycles
- Energy density>1600 MJ/m³ demonstrated
- Easily pelletized for ease of handling and fluidization

Magnesium Manganese Oxide Redox Material

Cyclical stability independently demonstrated in TG, tube furnace, and bench reactor experiments Material chemical thermodynamics and kinetics well developed and understood Literally "dirt" cheap

 $2298 \pm 88 \, \text{MJ/m}^3$ energy density based on tube furnace experiments (3 times SOA molten salt)

0% measurable loss in energy density over 100 cycles (50 c. - 500 h dwell @ 1500 °C - 50 c.)

 $1000\text{-}1500~^{\circ}\text{C}~_{\text{operating range for high efficiency heat-to-electricity conversion}}$

100% Recyclable

SoFuel Powder Bed Control

*A, B and C are system dependent parameters.

Fig. 3. Flow chart of the control logic for solid flow control using L-valve

Steady Powder Bed Flow at 1500°C!!

1 g/s particle bed and gas flow

Flowability Experiment with 3mm Al₂O₃ Particles

Countercurrent Flow Heat Recuperation Works!

Bed velocity: 0.025 cm/s Residence time: 20 min

Gas Flow

Department of Mechanical Engineering
MICHIGAN STATE UNIVERSITY

Particle Bed Flow

Economics of Long Duration Storage

Figure Levelized cost of storage a) Seasonal storage with daily storage b) Seasonal storage without daily storage

Utilization of Solid State Fuel

In Search of the ideal "Thermal Battery"

Low Carbon, Low Energy, and Low Cost Production of Metals

10% of global GHG emissions are a result of metal production¹

¹Stephen Lezak, Charles Cannon and, Thomas Koch Blank, Low-Carbon Metals for a Low-Carbon World: A New Energy Paradigm for Mines, Rocky Mountain Institute, 2019, http://www.rmi.org/url here.

Solar Carbothermic Production of Zn Demonstration

- Solar power input, Q_{solar} = 300 kW
- Solar concentration, C = 1500 suns
- Reactor temperature, T_{reactor} = 1500 K
- Zn production rate = 45 kg/h
- Zn purity = 95%
- Thermal efficiency:

$$\eta_{\text{thermal}} = \frac{\Delta H}{Q_{\text{solar}}} = 30\%$$

Weizmann Institute, Rehovot, Israel

• ASME J. Solar Energy Eng. 129, 190-196, 2007.

Weizmann Institute—Demonstration of Solar Thermochemical Processing Industrial Scale-up

Hyperbolic Beam Down

Secondary **Concentrator**

TECHNOLOGIES OFFICE

U.S. Department Of Energy

Solar Magnesium Production – Falling Particle Reactor

$$MgO + C \rightarrow Mg + CO$$

Nowcasting, predictive control, and feedback control for temperature regulation in a novel hybrid solar-electric reactor for continuous LAR ENERGY solarthermal chemical processing

Scott C. Rowea,*, Illias Hischierb, Aaron W. Palumboc, Boris A. Chubukovc, Mark A. Wallaces, OLOGIES OFFICE

Scott C. Rowea,*, Illias Hischierь, Aaron W. Palumboc, Boris A. Chubukovc, Mark A. Wallaced, OLOGIES OFFICE Rachel Vigerd, Allan Lewandowskie, David E. Cloughd, Alan W. Weimers,*

U.S. Department Of Energy

Clean Steel Production Using Renewable Hydrogen

PRINCIPLES OF HYBRIT IRONMAKING

Concluding Thoughts

- •Solar fuel synthesis and metal extraction are feasible using high temperature redox reactions
- Robust, efficient, and cost competitive reactor technology is an enabler
- •High temperature thermochemistry science and technology remains in its infancy
- •Research opportunities lie in materials development; radiation, thermal, and chemical transport; chemical kinetics; reactor design; process control
- •Cost competitive technology for scalable solar processing technologies is viable

Michigan State University Team

Dr. James Klausner Professor, MSU jfk@msu.edu

ME Department Chair Former ARPA-E Program Director Former ASME HTD Chair Former Ebaugh Professor, Univ FL

Dr. Kelvin Randhir PostDoc, MSU randhirk@msu.edu

Dr. Joerg Petrasch Assoc. Professor, MSU petrasc1@msu.edu

