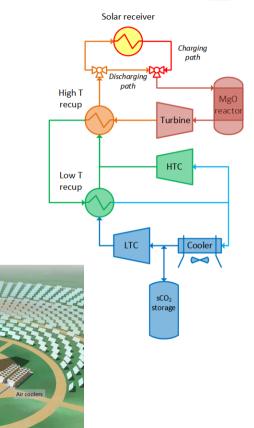


Thermochemical Energy Storage Integrated with an sCO₂ Power Cycle

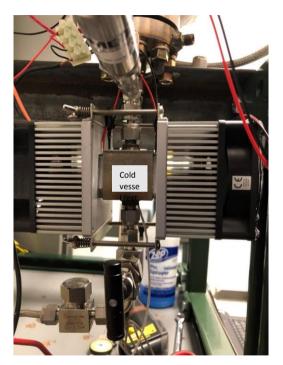
This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technology Office (SETO) Award Number DE-EE0008126


Echogen Power Systems background

- Founded in 2007
- Mission: To develop and commercialize a better exhaust and waste heat recovery power system using CO₂ as the working fluid
- First company to deliver a commercial sCO₂ power cycle
- Developing a CO₂based PTES/ETES system

- Thermochemical energy storage using MgO+CO₂=MgCO₃ reversible reaction with sCO₂ power cycle
- CO₂ generated/consumed stored by sCO₂ inventory control system (ICS)
- Reactor and ICS storage in underground pressure vessel
- Overall technology requirements:
 - >50% cycle thermodynamic efficiency
 - >95% exergetic storage efficiency
 - Storage system cost < \$15/kWth</p>

3


sCO₂ power block

sCO₂ storage

Southern Research sorbent development program

Samples are individually wrapped in steel mesh and bound with copper wire, after test the mesh is substantially oxidized

Cold side including pressure transducer, two thermocouple probes, RTD, fill valve and cold vessel with thermoelectric modules and heat sinks.

1.	The carbonation was
	performed at 610 °C with a
	pressure of 225 atm and de-
	carbonation was performed at
	660 °C with a lower pressure of
	75 atm.

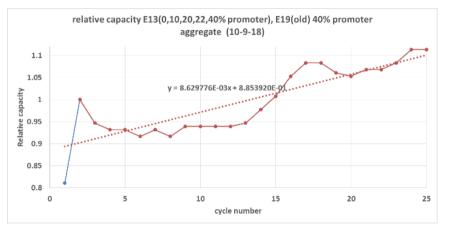
2. The cycling process initiation

was done at the de-carbonation

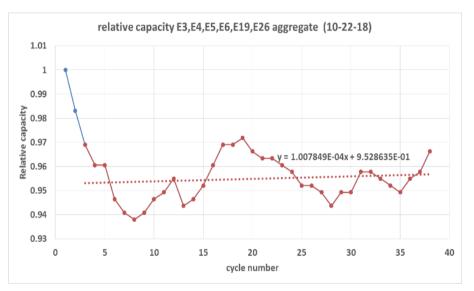
steps.

Sorbent screening study summary

			cos	st (\$/kWh_th)
	weight gain	Energy density	<u>total</u>		
sample name	<u>(≥0.25 g/g)</u>	<u>(≥500 MJ/m^3)</u>	<u>sorbent</u>	<u>containment</u>	<u>(<9)</u>
E13 pellet 0% promoter	0.125	398	5.89	3.21	9.11
E13 pellet 10% promoter	0.165	581	4.98	2.20	7.18
E13 pellet 20% promoter	0.228	872	3.95	1.47	5.42
E13 pellet 22% promoter	0.188	733	4.85	1.74	6.60
E13 pellet 40% promoter	0.211	941	4.84	1.36	6.19
E19(older) pellet 40% promoter	0.330	1474	1.23	0.87	2.10
SR1.1 powder 0% promoter	0.717	1139	1.02	1.12	2.15
SR1.1 pellet 0% promoter	0.351	761	2.09	1.68	3.77
SR1.1 powder 10% promoter	0.833	1537	0.99	0.83	1.82
SR1.1 pellet 10% promoter	0.574	1424	1.44	0.90	2.33
SR1.1 powder 20% promoter	0.825	1282	1.09	1.00	2.09
SR1.1 pellet 20% promoter	0.615	1204	1.46	1.06	2.52
SR1.1 powder 40% promoter	0.826	865	1.23	1.48	2.71
SR1.1 pellet 40% promoter	0.723	1299	1.41	0.98	2.39
E3 pellet 20% promoter	0.149	500	6.03	2.55	8.59
E4 pellet 20% promoter	0.300	778	3.00	1.64	4.64
E5 pellet 20% promoter	0.069	163	13.04	7.86	20.90
E6 pellet 20% promoter	0.149	293	6.05	4.36	10.41
E19(new) pellet 20% promoter	0.245	420	3.68	3.04	6.72
E26 pellet 20% promoter	0.255	437	3.54	2.92	6.46
SR1.1Pcal coated 40wt%	0.772	2081	1.32	0.61	1.93
SR1.2 pellet 40% promoter	0.735	1968	1.39	0.65	2.04
wg-citrater_coateu_carbon_sintereu_40wt%	0.731	1735	1.39	0.74	2.13
Mg-citrateP _coated_carbon _40wt%	0.789	1699	1.29	0.75	2.04
Mg-citrateP_carbon_sintered _40wt%	0.668	1586	1.52	0.81	2.33
Mg-citrateP_carbon40wt%	0.739	1739	1.38	0.73	2.11

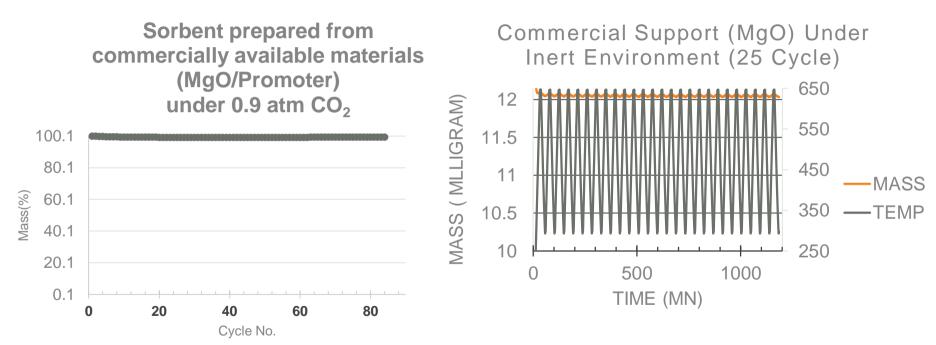

Highlighted text means expectations met

G



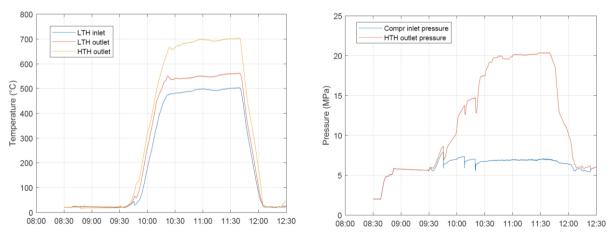
Selected for scale up

Durability and capacity of sorbent

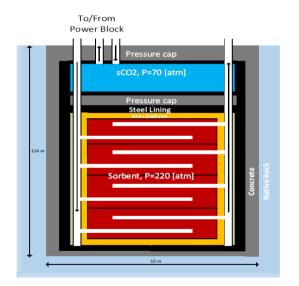


Durability of aggregate samples E13, E19 (old), meet the milestone metric. 25 cycles plotted, 24 fit to the degradation curve the average capacity change was a positive 21.6 %/25 cycles, which meets the degradation target of <2% degradation/25-cycles

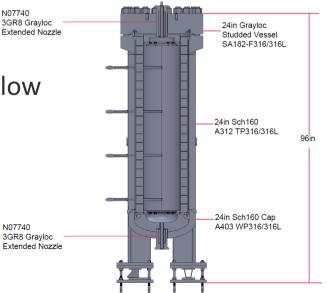
Durability of aggregate samples E3, E4, E5, E6, E19, E26 meet the milestone metric. 38 cycles total, 36 fit to the degradation curve the average capacity change was a positive 0.25 %/25 cycles, which meets the degradation target of <2% degradation/25-cycles

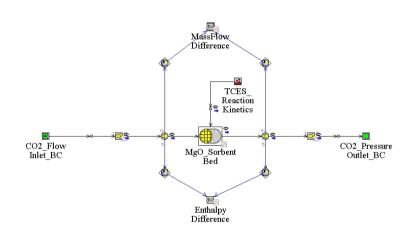


Scaled up sorbent was tested using laboratory setup under identical carbonation-decarbonation for 10 cycles. Sorbent was collected after full carbonation cycle and measured for weight gain. 0.418g CO₂/g sorbent capacity was observed, indicating validation of results for BP1. This work is ongoing for higher number of cycles.

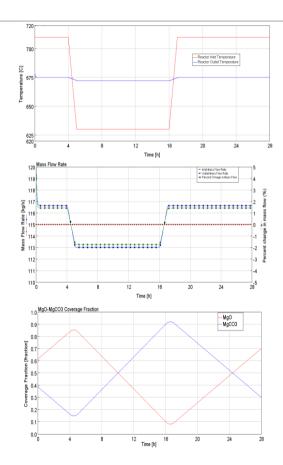

Lab sCO₂ flow loop

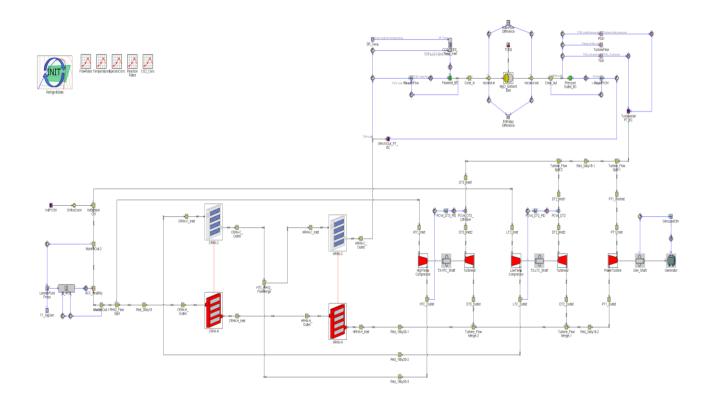
- 20 MPa, 700°C, 0.25 kg/s design
- Custom in-house sCO₂ heater
- Met/exceeded all requirements
- Upgrading to 800°C low-pressure side (8 MPa) for ARPA-E HITEMMP program


Reactor design concept and lab-scale design

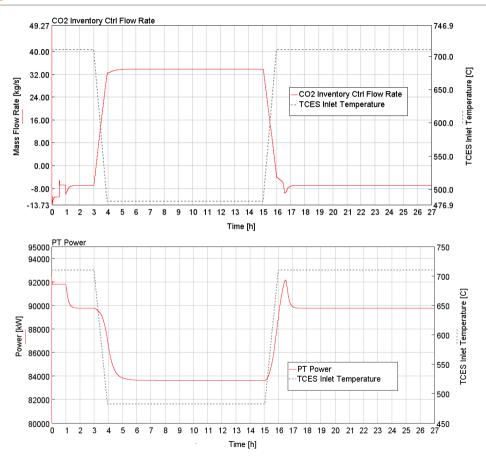

- Full-scale design concept is a hybrid drilledrock vessel with internal insulation
- Also considering array of smaller-scale surface-mounted

vessels

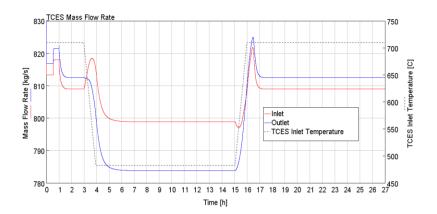

 Lab-scale design internally-insulated, low wall temperature

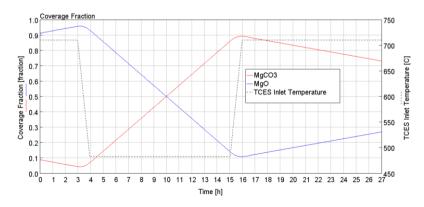

Transient reactor modeling

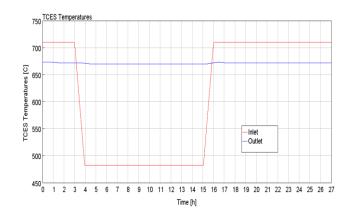
Sorbent particle diameter	3 mm		
Sorbent bed void fraction	0.5		
Reactor frontal diameter	5 m		
Reactor length	20 m		
Active sorbent density	6171.3 mol/m ³		



TCES-sCO₂ Combined Model




11


TCES-sCO₂ Combined Model Results

TCES-sCO₂ Combined Model Results

- Sorbent formulation / recipe for cyclic test selected, and toll manufacturer quoting sample and production runs
- Reactor design complete, in fabrication
- Test cell modifications complete and tested
- Cyclic testing scheduled for 3/2021 5/2021
- Full-scale reactor conceptual design 1/2021 7/2021