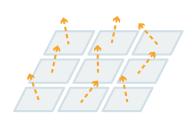
Sources of optical error

Steve Schell

CTO & Chief Engineer

steve@heliogen.com

A high-performance heliostat field must address each of these error sources


Mirror Shape Error

Deviations from ideal shape reflect rays in wrong direction, defocusing the beam

Tracking Error

Imperfect tracking places beam in incorrect position at the receiver

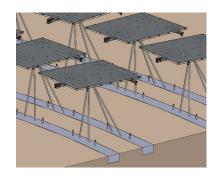
Canting Error

Misalignment between mirror facets enlarges and defocuses the beam

Off-Axis Aberrations

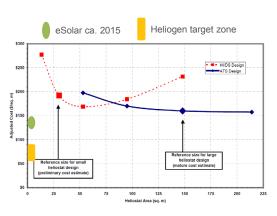
"Ideal" shape of mirror depends on sun position; at other orientations the beam is distorted

Time to think outside the box


Steve Schell

CTO & Chief Engineer

steve@heliogen.com


Computer vision based closed-loop tracking: System for Observing Heliostat Orientations while Tracking (SOHOT)

Design for high-volume
(auto, consumer
electronics)
manufacturing processes

Field layout optimized for installation, cleaning, and maintenance

Small heliostats are more expensive?

From Jones et. al. 2007 "Heliostat Cost Reduction Study"

