Unlocking Solar Thermochemical Potential: Markets, Opportunities, and Challenges

Workshop – November 12th, 2020

Dr. Davide Zampini

Head of CEMEX Global R&D

Cement

Aggregates

Ready-Mix

CEMEX OPERATIONS • A GLOBAL TRADING NETWORK

EBITDA

FREE CASH FLOW

13,130 2,378 695 Millions USD

Urbanization Solutions

Sustainability

Admixtures

CEMEX

CEMENT AND GRINDING PLANTS

65

MILLION TONS PRODUCTION CAPACITY

93

CEMENT

QUARRIES

262

MILLION TONS ANNUAL SALES VOLUME

135

AGGREGATES

+40.6

THOUSAND EMPLOYEES

PEOPLE

1,427

PLANTS

50

 $MILLION\,m^3\,ANNUAL\,\,SALES\,\,VOLUME$

READY-MIX CONCRETE

279

LAND DISTRIBUTION CENTERS

56

MARINE TERMINALS

TERMINALS

Target 2030:

Cement

35%
Reduction of CO₂
Emissions vs 1990
Baseline

Aligned with the 2 Degree scenario of the IEA

Ambition 2050:

Concrete Globally

Estimated CO2 Footprint for a high strength concrete produced with cement Type I

Net-zero CO2

Concrete

kgCO₂/ton cementitious

Proven technology, focus on fast deployment and removing barriers

Reforestation Offsets

Clinker/ Cement A significant portion of CO_2 mitigation (> 30%) will rely on technologies not yet fully developed – not industrially and commercially viable. Innovation / R&D.

CHALLENGES

- **⊃** CO₂ Reduction
- ⇒ CO₂ Concentration & Capture
- **⇒** CO₂ Reutilization

High Performance High Temperature Solar Heat & Thermo-Chemical Processes

High Level Conceptualization – Inspiration of the Aspiration

Concept:

Heat HTF at the top of the solar tower and use HTF to heat up the material and deliver required energy at the pyro-processing stages

Thermal energy storage (TES) – not displayed

Backup burner – not displayed

Integration Considerations

- 1. Solar energy demand and availability to fulfill production process
- 2. Transport and efficiency of the heat transfer fluid (HTF) and materials
- 3. Energy transfer in kiln
- 4. Impact on thermochemistry of clinkerization and calcination quality of clinker
- 5. Adaptions & modifications of plant components

Receiver

CONFIGURATION

INTERVENTION SCHEME

Solar Calcination

Raw material
Raw mill Filter Stack
Rotary kiln
Clinker cooler

Full Solar -----

2021
Calcination "Lab" Pilot
250kW_{th}

2023

Calcination Pilot
1 MW_{th}
Full Solar

1 MW_{th}

2026
Full Integration
10 MW_{th}

2028Industrial Scale100 MW_{th}600 tpd

HTF CLINKERIZATION AND CALCINATION

Material Quality & Performance Unaltered

- Impact of the Heat Transfer Fluid (HTF) on the heating zones including residence time
- ⇒ Heat exchange efficiency between material as a function of CO₂/ H₂O ratios
- Shifts of heating curves and phases formation

BACK UP

WHY CST (SOLAR THERMAL) - COST OF HEAT

While there is a growing interest in electrically heated systems driven directly by cheap renewable power as alternative to CST systems, even under very aggressive conditions CST has the upper hand.

