

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

SOLAR ENERGY TECHNOLOGIES OFFICE

Next Generation Receivers

R&D Virtual Workshop Series Concentrating Solar Power Program

Avi Shultz, CSP Program Manager Matthew Bauer, CSP Technology Manager, US DOE matthew.bauer@ee.doe.gov

energy.gov/solar-office

Progress and Goals: 2030 LCOE Goals

2

energy.gov/solar-office

A Pathway to 5 Cents per KWh for Baseload CSP

energy.gov/solar-office

3

ENERGY TECHNOLOGIES OFFICE

CSP Technical Targets

Next Generation CSP will Leverage Next Generation Power Cycles

Solar Thermal can Integrate with the Existing Energy System

Solar Thermal Industrial Process Heat

Process Heat

SOLAR ENERGY TECHNOLOGIES OFFICE CSP R&D Virtual Workshop Series

- Autonomous, Integrated Heliostat Field & Components October 20th, 2020
- Next Generation Receivers October 29th, 2020
- Unlocking Solar Thermochemical Potential November 12th, 19th, December 3rd,
 2020, 11am 2pm ET
 - Pumped Thermal Energy Storage Innovations November 17th, 2020, 1-5pm ET
- CSP Performance and Reliability Innovation December 10th, 2020, 11am 2pm ET *Full details and registration links will be posted here: https://bit.ly/CSP-workshops

•

Problem Statement and Workshop Goals

Problem Statement

Concentrated Solar Thermal applications are limited by the conditions (temperatures and solar flux) and control of converting concentrated light to thermal energy.

- Gen3 CSP (for a 700°C sCO₂ Power Cycle)
- Other Novel Electricity Generation embodiments
- Long Duration Thermochemical Energy Storage
- Solar Fuels
- High Temperature Process Heat
- Commodity Production

Workshop Goal

Enable CSP stakeholders to engage with SETO and CSP Receiver experts in an informal panel format to share insights and lessons learned for developing and de-risking new receivers for new systems.

All statements made by panelists and participants are personal reflections, based on their experiences.

Consider framework for advancing receiver innovations from idea to commercial adoption.

Generic Metrics Historically Used by SETO

Cost: \$150/kW_{th}

Receiver Panel

• Piping (riser, downcomer)

Auxiliary Components

• Cold Pump, Circulator, etc.

Efficiency: 90% Optical to Thermal

- Incident Flux on Target / Thermal Energy Delivered to Storage
- Receiver Optical Properties
- Convection (wind)

Interconnects

- Consider Pressure and Parasitic Losses
- Conduction not recuperated

Lifetime: 30 Years

- Consistent with Financial Models informing SETO's Cost and Performance Targets
- Part Replacement accounting for additional O&M is a viable strategy

Application Specific Targets

- Gen3 CSP: Outlet Temperature > 720 °C
- Compatible with Dispatchable Thermal Energy Storage

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Factors preventing innovative receivers

Ishikawa diagram approach

FRGY TECHNOLOGIES OFFICE

Thinking through Risk within Tiers of Technology Maturity

Overlooked Target Audience

Who uses the knowledge from the campaign? How does the audience impact development efforts?

Target Audience:

- Research Peers
 Materials Manufacturers
 System Integrators
 Component Producers
 Commercial Project Developers
 Chemical or Commodity Producers
 Financers
- Utilities

Data Sets Data Sets Manuscripts Sharable Code Off Design Performance Design Drawing Risk Assessment Formalism Market Analysis

U.S. Energy use by Sector

U.S. Carbon Dioxide Emissions by Sector

Data Synthesized from "US Carbon Dioxide Emissions in 2018" Lawrence Livermore National Laboratory

Innovation is Critical!

Ceramic Tubular Products *Silicon Carbide Composite*

Jeff Halfinger: ctp-usa.com

Los Alamos National Laboratory

Counter Gravity Heat Pipe Receiver

National Renewable Energy Laboratory "Black Body" Enclosed Particle Receiver

Zhiwen Ma

University of Tulsa *Microvascular Carbon Composite Receiver*

Michael Keller

SOLAR ENERGY TECHNOLOGIES OFFICE

Innovation is Critical

Argonne National Laboratory Binder Jet Add. Manf. with MAX Phase Mats.

Dileep Singh

Dartmouth College Stable, Spray-able, Solar Selective Coatings

Jifeng Liu

Idaho National Laboratory Creep-Fatigue Behavior in Nickel Alloys

University of Michigan Spectrally Selective Aerogels

Agenda

Time	Session
1:00PM- 1:30PM	Introduction and Workshop Overview Avi Shultz, DOE Program Manager, Concentrating Solar Power Matthew Bauer, DOE Technology Manager, Concentrating Solar Power
1:30PM– 3:00PM	Panel – First of a Kind Receiver Development for Gen3 CSP Cliff Ho, Sandia National Laboratories Shaun Sullivan, Brayton Energy Craig Turchi, National Renewable Energy Laboratory
3:00PM– 4:30PM	Panel – Impactful R&D for Technology Adoption Brian Fronk, Oregon State University Michael Wagner, University of Wisconsin Mark Messner, Argonne National Laboratory David Wait, Nooter/Eriksen
4:30 PM	Closing Remarks Matthew Bauer, Department of Energy

energy.gov/:

Gen3CSP

Bringing together the people and the pieces for an INTEGRATED CSP SYSTEM

energy.gov/solar-office

First of a Kind Receiver Development for Gen3 CSP

Cliff Ho SNL 2012: Particle Receiver / System 2015: Particle Mass Control 2018: Gen3 Particle Pilot Plant

Shaun Sullivan Brayton Energy
2012: Direct sCO₂ Receiver
2015: Metal Hydride Receiver/System
2018: Gen3 Gas System

Craig Turchi NREL 2012: sCO₂ Turbine Test 2015: CSP System Analysis 2018: <u>Gen3 Liquid Pathway to SunShot</u>

Panel 1 Themes (FOAK Gen3 Receivers)

- When scaling innovations from lab-scale research to on-sun demonstration and to commercial scale deployments, what are the key risks that are often overlooked in the development process?
 - What overlooked technical metrics/objectives should be considered in both early and late stages of receiver R&D?
 - What accomplishments are needed to adequately de-risk a receiver for 10 MW demonstration and beyond?
- What innovations could impact, improve, or shift the paradigm for a Gen3 System's receiver?
- How should a system integrator go about balancing constraints between the receiver and the remainder of the power plant?

Impactful R&D for Technology Adoption

Brian Fronk Oregon State U.

Mark Messner Argonne National Laboratory

Mike Wagner U. of Wisconsin

energy.gov/solar-office

David Wait Nooter/Eriksen

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Panel 2 Themes (Impactful Receiver R&D)

- When scaling innovations from lab-scale research to on-sun demonstration and to commercial scale deployments, what are the key risks that are often overlooked in the development process?
- How does one go about making an innovation bankable?
 - For a specified risk, how is an adequately de-risked handoff achieved?
 - What standards exist for proving and scaling up innovations?

What risks exist physically interfacing a specified innovation with the remainder of the system? How are they overcome?

SOLAR ENERGY TECHNOLOGIES OFFICE CSP R&D Virtual Workshop Series

- Autonomous, Integrated Heliostat Field & Components October 20th, 2020
- Next Generation Receivers October 29th, 2020
- Unlocking Solar Thermochemical Potential November 12th, 19th, December 3rd,
 2020, 11am 2pm ET
 - Pumped Thermal Energy Storage Innovations November 17th, 2020, 1-5pm ET
- CSP Performance and Reliability Innovation December 10th, 2020, 11am 2pm ET *Full details and registration links will be posted here: https://bit.ly/CSP-workshops

•

Gen3 Particle Pilot Plant (G3P3) Receiver Design and Testing

PRESENTED BY

Clifford K. Ho

Sandia National Laboratories, Albuquerque, NM, <u>ckho@sandia.gov</u>

Contributors:

SNL: Nathan Schroeder, Henk Laubscher, Lindsey Yue, Brantley Mills, Reid Shaeffer, Joshua Christian, and Kevin J. Albrecht

Others: Georgia Tech, King Saud U., DLR, ANU, CSIRO, U. Adelaide, CNRS-PROMES, CARBO Ceramics

SAND2020-11936 PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- Introduction and Objectives
- Receiver Design
- On-Sun Testing
- Lessons Learned

Background and Introduction

3

High-Temperature Particle-Based CSP

Background and Introduction

Background and Introduction

- Higher temperatures (>1000 °C) than molten nitrate salts
- Direct heating of particles vs. indirect heating of tubes
- No freezing or decomposition
 - Avoids costly heat tracing
- Direct storage of hot particles

6

Gen 3 Particle Pilot Plant ~1 - 2 MW_t receiver 6 MWh_t storage 1 MW_t particle-to-sCO₂

- 1 MW_t particle-to-sCO₂ heat exchanger
- ~300 400 micron ceramic particles (CARBO HSP 40/70)

K. Albrecht, SNL

Objectives

- Present evolution of receiver design for G3P3
- Describe on-sun testing to evaluate performance of new design features and obtain operational experience
- Identify system interfaces, design challenges, and lessons learned

ħ

- Introduction and Objectives
- Receiver Design
- On-Sun Testing
- Lessons Learned

Alternative Particle Receiver Designs

Free-Falling (SNL)

Obstructed Flow (Georgia Tech, King Saud U.)

Centrifugal (DLR)

Fluidized Bed

G3P3-USA Receiver Design Evolution

ħ

StAIR (Staggered Angle Iron Receiver) Testing 11

Drawing of "stairs" in receiver cavity

StAIRS create a more uniform and opaque particle curtain for increased solar absorptance

Particle flow over two-stair configuration (5 - 10 kg/s)

SNOUT and Reduced Volume Receiver 13 SNOUT

Baseline

Baseline

Reduced volume receiver

Experiment

SNOUT and reduced-volume reduced advective heat loss by ~20 - 25%

Simulation

- Introduction and Objectives
- Receiver Design
- On-Sun Testing
- Lessons Learned

Control Room and On-Sun Testing

¹⁶ Sample of Test Log

Date	Start	End	Description	Weather
17-Aug-20	11h00	14h30	Receiver testing 500°C and 700°C, peak flux of 60 and 115 W/cm^2, two stairs	Very windy afternoon, Some clouds
18-Aug-20	11h00	14h30	Receiver testing 500°C and 700°C, peak flux of 60 and 115 W/cm^2, two stairs	Hazy from smoke
20-Aug-20	10h30	15h00	Test load cells, 50 W/cm^2, 500-600 °C, test single stair, top stair only	
21-Aug-20	10h30	14h00	Receiver testing, load cell troublehooting, single top stair	Hazy from smoke, low DNI
4-Sep-20	10h30	15h00	Receiver test day, 500C @ 5kg/s and 10 kg/s, with 50 W/Cm ² 700C @ ±5kg/s and 50 W/cm ² 700C at 108W/cm ²	Good DNI clear skies

¹⁷ On-Sun Particle Temperatures

18 Receiver Efficiencies

Particle Temperature Control

Automated particle outlet temperature control using closedloop PID controller ħ

²⁰ **Overview**

- Introduction and Objectives
- Receiver Design
- On-Sun Testing
- Lessons Learned

Mechanical Interfaces of System

- Particle feed to the receiver
- Concentrated sunlight to particles
- Receiver to storage/collection bin
- Storage to heat exchanger
- Heat exchanger to sCO2 flow loop
- Heat exchanger to particle lift

Particle Feed to the Receiver

- Sufficient pipe inclination angle for flow
 - Particle friction changes with temperature
- Funnel flow and avalanching in top hopper

Pipe from particle elevator to top hopper

Particle Feed to the Receiver

- Initially used fixed-aperture plates to control mass flow rate into receiver
- Slotted plate deformed upon heating
- Reduction of particle mass flow rate led to melting of mesh structures
- Need automated particle mass-flow control to maintain constant particle outlet temperatures with varying irradiance

Staggered array of chevronshaped mesh structures

Particle Mass Flow Control - Demo

G. Peacock, K. Albrecht (SNL)

ħ

Concentrated Sunlight to Receiver

- Particle loss through open aperture
 - Trade-off between direct irradiance and particle losses
- Air curtains to reduce convective heat loss
- Light trapping with novel particle release patterns

Pump and nozzles to produce air curtain across aperture

25

ħ

Receiver to Storage Bin

- Reduce wear from direct impact on walls
 - Design for particle to particle impact
- Minimize opening to reduce heat loss from storage
- Design for filtration of debris and particle fines

²⁸ Summary

- Next-generation high-temperature particle receiver designed and tested
 - Optimized geometry to reduce advective and particle losses
 - SNOUT wind protection
 - Stairs to increase particle-curtain opacity and stability
- Lessons learned
 - Designs need to be scalable to large sizes (~1000 kg/s required)
 - High-flux, high-temperature environments are harsh on materials and sensors
 - In-situ measurements of temperature, mass flow, irradiance, wind
 - Thermal expansion
 - Mass flow control
 - Transient operation (start-up and shut-down)

²⁹ Acknowledgments

- This work is funded in part or whole by the U.S. Department of Energy Solar Energy Technologies Office under Award Number 34211
 - DOE Project Managers: Matthew Bauer, Vijay Rajgopal, and Shane Powers

Thermodynamic Interfaces

³² Overheating of Flow Obstructions

Failure of 316 SS mesh structures on July 24, 2015 ~700 suns at ~1000 C (steel)

Uneven particle flow caused runaway heating and melting of obstructions

Include together // eoole // Dieces // INTEGRATED Innovations Enabling CSP SYSTEM a Gen3 Gas-Phase Receiver

29 October 2020

Shaun Sullivan Principal Investigator, Gen3 Gas Phase Renewables R&D Program Manager sullivan@braytonenergy.com

FrBraytonEnergy

an innovative R&D firm dedicated to making meaningful contributions in the field of environmentally responsible, sustainable energy production

- Turbomachinery
- Compact Heat Exchangers
- Distributed Generation/CHP
- Concentrating Solar
- Alternative Fuels
 Nuclear
- Energy Storage
- Combustion
- Hybrid Vehicles
 UAVs

- Develop a 100 MW_e commercial system that can absorb, store, and dispatch concentrated solar energy to a working fluid at conditions commensurate with an sCO₂ power cycle (700 °C, 25 MPa)
- Design a Megawatt-scale test facility to demonstrate and de-risk the technology innovations embodied in the commercial design
 - Phase 1 (October 2018-December 2019)
 - System specification, design, modeling, analysis
 - Phase 2 (January 2020-March 2021)
 - Component-level testing
 - Test facility design

r Brayton Energy

- Phase 3 (October 2021-October 2024)
 - Test facility final design, construction, commissioning, operation, and testing

A Quick Tour: Gen3 Gas Phase Receiver

Introduction • <u>Receiver Tour</u> • Flux Profiling • Emerging Materials • System Optimization

ArBraytonEnergy

Maximizing the Utilization of Materials

Flux Profiling

ArBraytonEnergy

- Aim point selection incorporated into GEN3 system
 - Selection based on matching a prescribed user flux profile
- Ability to achieve desired flux profile depends on complexity of desired profile for:
 - Given heliostats (optical errors)
 - Receiver geometry
 - Field size

Innovative Heliostat Field Control

Single Tube Structural Model Results

ASME Section II Allowable Stress

Receiver Life Results

	Cycle Type 1	Cycle Type 2
Parameter	Start-up/	Cloud
	Shut-down	Event
lastic strain range, Δεe	0.000375	0.00019
Creep strain per cycle, Δεc	1.72987E-07	0
otal strain range,Δε _τ	0.00061	0.00002
Design Allowable Cycles, Nd	5.22E+13	2.10E+15
Design Cycles, n	10950	109500
Cycle Damage Fraction	2.10E-10	5.22E-11
otal Fatigue Damage Fraction	2.6198E-10	

✓ CREEP-FATIGUE

Special Metals In740H

- Receiver design entirely enabled by the advent of In740H •
 - H282 is an even more promising prospect with active AM development, but is not yet code qualified ۲

Integrated System Modeling

- The Gen3 Gas Phase leverages the baseload power block as the heat transfer fluid circulator during TES charging operation
 - Minimizes capital costs
 - Imposes a pressure drop penalty during on-sun operations
- Independent studies evaluated the impact of this pressure drop

LCOE Optimization and Specific Cost Functions

Optimal System Design Accepts Elevated DP

- An integrated analysis that does not presuppose "foregone conclusions" can lead to nonintuitive results
 - i.e. LCOE is minimized by optimizing the power block around a high on-sun PHX DP/P, and allowing it to operate at low DP/P during off-sun hours
 - This strategy also enables system integration with AUSCS cycles, which are significantly less sensitive to PHX DP/P
 - System stability demonstrated via detailed turbomachinery mapping and cycle analysis

r BraytonEnerg)

Shaun Sullivan Principal Investigator, Gen3 Gas Phase Renewables R&D Program Manager sullivan@braytonenergy.com

Gen3CSP

Bringing together the people and the pieces for an

Thank You

We gratefully acknowledge the support and funding of the United States Department of Energy Office (via DE-EE0008368) without which this work would not have happened.

Liquid Pathway Receiver Design: Molten Salt and Liquid Sodium

Craig Turchi, PhD Thermal Energy Science & Technologies Group National Renewable Energy Laboratory craig.turchi@nrel.gov

- *Gen3 Liquid Pathway* project seeks to demonstrate potential of chloridebased molten salt for energy storage at > 700°C.
- Chloride salt's high freeze point and poor thermal conductivity are challenges for use in a solar receiver.
- Project evaluated molten chloride salt and liquid-metal sodium as alternatives for a liquid receiver at > 700°C operation.

ASTRI

Australian Solar Thermal Research Institute
Gen3 Heat Transfer Fluids vs. Current Solar Salt

Alloy Strength with Temperature

Critical to Maintain Flux within Allowable Limits

Rethink Conventions

The bottom flow circuit limits the co-incidence of high-flux and high-temperature and the expected design life increases 5-6x versus the conventional (top) design.

Creep / Fatigue Analysis

Solar Central Receivers:

- Aren't technically *pressure vessels* (no primary load)
- Diurnal cycling (of secondary load) means failure by:
 - ► Fatigue <600 °C
 - Creep-fatigue 600 °C to ≈750 °C
 - Creep ≈750 °C to 850 °C

- Logie, "Structural Integrity of Advanced Solar Central Alloy 740H Receiver Tubes" SolarPACES 2020
- Bipul Barua et al., "Design Guidance for High Temperature Concentrating Solar Power Components," Argonne National Laboratory, Technical Report ANL-20/03, 2020.

Design Methods for Creep-defined Systems

Simpler and conservative

- 1. Design by elastic analysis using ASME Section III, Division 5
- 2. Design by elastic analysis using ASME Section III, Division 5 with reduced margin and simplified creep-fatigue evaluation
- More complex and more accurate
- 3. Design by inelastic analysis

- Logie, "Structural Integrity of Advanced Solar Central Alloy 740H Receiver Tubes" SolarPACES 2020
- Bipul Barua et al., "Design Guidance for High Temperature Concentrating Solar Power Components," Argonne National Laboratory, Technical Report ANL-20/03, 2020.

Pilot Scale Objectives

- Demonstrate operational control and reliability
 - Fill, control transients, drain, repeat
- Validate model results with performance data
 - Heat transfer coefficients
 - Temperatures (fluid and tube)
 - Ramp rate behavior
- Freeze recovery
- Corrosion rates and creep damage

Proposed Integrated System Design

Summary

- Start with commercial design, use that to define what the pilot-scale system needs to do.
- > 700°C requires creep-regime analysis. Detailed inelastic analysis is necessary for accuracy and to avoid overly conservative limits.
- Material availability, code qualification, physical data, welding knowledge, etc. can be constraining.
- Transient operations will be the challenge.
- Rethink convention

Thank you!

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Supporting Slides

CSP Heat Transfer Fluids

Parameter	Solar Salt (Gen2)	Chloride Salt (Gen3)	Liquid Sodium (Gen3)
Composition	Binary NaNO ₃ -KNO ₃	Ternary MgCl ₂ -KCl-NaCl	100% Na
Freezing Point (°C)	~238	~400	98
Volume change on melting	+3.3%	+20%	+2.6%
Stability Limit (°C)	~600	> 900	882 (bp)
Density (kg/m ³)	1770 @ 500°C	1560 @ 700°C	835 @ 700°C
Specific Heat (J/g-K)	1.53 @ 500°C	0.98 @ 700°C	1.26 @ 700°C
Viscosity (cP)	1.30 @ 500°C	2.28 @ 700°C	0.24 @ 700°C
Thermal Cond. (W/m-K)	0.54 @ 500°C	0.42 @ 700°C	64.2 @ 700°C
Major Concerns	NO _x formation Thermal stability	High freeze point Corrosion	Burns in air

Benefit Scoring (Higher Scores = Higher Benefit)

Risk Scoring (Higher Scores = Higher Risk)

- Sodium case estimated at 11% lower LCOE
- Sodium case had better Benefit/Risk ratio: Sodium = 1.19, Salt = 0.86
- Team selected the Sodium Receiver design

Oregon State University

Impactful R&D for Technology Adoption

Brian M. Fronk Solar Technology Office CSP R&D Virtual Workshop Series October 29th, 2020

COLLEGE OF ENGINEERING School of Mechanical, Industrial, and Manufacturing Engineering

Scaling Innovations

Modular, micro-pin receivers can enable high efficiency and high temperature solar processes, but with significant manufacturing challenges.

Separate Effects Investigation

Materials
Fabrication Methods
Thermal and Mechanical

Mitigate Integrated Manufacturing Risks

Prototype Demonstration

Manufacturing Risks

Potential Missed Risks

- Process limitations on design
- Availability of process capability
- Cost of demonstration/developing process
- Unexpected interactions between processes

Banking Innovation

Ideal World:

- Develop manufacturing process
- Validate each step in processes
- Build multiple production prototypes

Example Approach - Challenges

Failure due to interaction with diffusion bonded surface

Brazing/Welding

- Headers-to-plate
- Proof test (pass)
- Destructive test(pass)

Manufacturing \rightarrow 10 MWe

Ideal World:

- Build multiple production prototypes
- Conduct reliability tests (e.g., temperature/pressure cycling)

Potential R&D Challenges:

- Requires "final" design
- Expensive
- Time consuming
- Who is going to do it?
- Small volume in CSP \rightarrow tool investment

Material/Mechanical Life Risks

Potential Missed Risks

- "Exotic" materials
- Limited experience (machining, forming, joining, etc.)
- Limited base material data at conditions
- Limited/no data on joints
- Extreme operation (difficult to replicate)
- Standards (ASME, UL) haven't caught up

Banking Innovation \rightarrow Materials/Mechanical

Potential R&D Challenges:

- Fund material data tests (similar to corrosion round robin in NE)
- Dedicated studies on joints and joint properties
- Develop centralized reliability testing capability (e.g., SNL)
- Develop industry informed CSP specific standards for receivers

Closing Thoughts

- Unexpected challenges from proofof-concept to engineering prototype
- Manufacturing considerations should start day 1
- Coordinated effort on material properties
- Coordinated effort on joining technology and properties
- Share failures and success

Acknowledgments

Oregon State

Dr. M. Kevin Drost Dr. Brian Paul Dr. Rajiv Malhotra (now Rutgers) Dr. Sourabh Apte Patrick McNeff, Hank Pratte, Nasim Emadi, Thad Rhan, Bryan Siefering, Brian Blasquez, Seth O'Brien

UC-Davis

Dr. Vinod Narayanan Dr. Erfan Rasouli

NETL

Dr. Omer Dogan Dr. Kyle Rozman

Haynes International Vacuum Process Engineering

References

- McNeff, P. S., Paul, B. K., Doğan, Ö. N., Rozman, K. A., Kissick, S., Wang, H., Drost, M. K., Fronk, B. M. (2019), "Practical Challenges and Failure Modes During Fabrication of Haynes 230 Micro-Pin Solar Receivers for High Temperature Supercritical Carbon Dioxide Operation," 3rd European Supercritical CO₂ Conference, Paris, France, 19-20 September. <u>10.17185/duepublico/48901</u>
- 2. Rasouli, E., Mande, C. W., Stevens, M. M., & Narayanan, V. (2019). On-Sun Characterization of Microchannel Supercritical Carbon Dioxide Solar Thermal Receivers: Preliminary Findings. *ASME Energy Sustainability Conference*, Bellevue, WA, 14-17 July. <u>10.1115/ES2019-3898</u>
- 3. Narayanan, V., Fronk, B. M., L'Estrange, T., & Rasouli, E. (2019). Supercritical Carbon Dioxide Solar Thermal Power Generation—Overview of the Technology and Microchannel Receiver Development. In *Advances in Solar Energy Research* (pp. 333-355). Springer, Singapore. <u>10.1007/978-981-13-3302-6 11</u>
- 4. Hyder, M. B., Fronk, B. M., (2018), "Simulation of Thermal Hydraulic Performance of Multiple Parallel Micropin Arrays for Concentrating Solar Thermal Applications with Supercritical Carbon Dioxide", *Solar Energy*, 164, pp. 327-338. <u>10.1016/j.solener.2018.02.035</u>
- 5. Fronk, B.M., Jajja, S. A., (2018), "System and Component Transport Consideration of Micro-Pin Based Solar Receivers with High Temperature Gaseous Working Fluids," *ASME 15th International Conference on Nanochannels, Microchannels and Mini Channels*, Dubrovnik, Croatia, 10-13 June. <u>10.1115/ICNMM2018-7614</u>
- 6. Kapoor, M., Doğan, Ö. N., Carney, C. S., Saranam, R. V., McNeff, P., & Paul, B. K. (2017). Transient-liquidphase bonding of H230 Ni-based alloy using Ni-P interlayer: microstructure and mechanical properties. *Metallurgical and Materials Transactions A*, *48*(7), 3343-3356. <u>10.1007/s11661-017-4127-5</u>
- Zada, K. R., Hyder, M. B., Drost, M. K., Fronk, B. M., (2016), "Numbering-up of Microscale Devices for Megawatt Scale Supercritical Carbon Dioxide Concentrating Solar Power Receivers," ASME Journal of Solar Energy Engineering, 138(6), pp. 061007-061007-9. <u>10.1115/1.4034516</u>

Questions?

Brian.Fronk@oregonstate.edu

WE START WITH YES.

STRUCTURAL CHALLENGES FOR HIGH TEMPERATURE RECEIVERS

MARK MESSNER Argonne National Laboratory

2020 Next Generation Receivers Workshop

QUICK OVERVIEW

Basic challenges

Creep-fatique	Key structural factors			
Stress relaxation Metal thermal properties	Everything fails			
	Thicker is not better Circumferential versus axial thermal gradients Strength decrease in γ/γ' Ni-based alloys	Lower inlet/outlet temperature Solar aiming, reflectors, cavities		
		Structural health monitoring (digital twin) New materials (ceramics, cermets, HEAs)		

NREL/TP-5500-57625

Caveats: focus here on structural damage (versus environmental) and on tubular receiver designs Many of these lessons-learned apply to other types of designs, but coolant compatibility is a key factor in selecting a receiver material

BASIC CHALLENGES

CREEP-FATIGUE IS THE DOMINANT FAILURE MECHANISM FOR HIGH TEMPERATURE RECEIVERS

Fatigue versus creep-fatigue for Alloy 740H (1% strain range)

- At high temperatures the combination of creep and fatigue is much more damaging than each individually:
 - Fatigue: failure under cyclic load
 - Creep: failure under steady load
 - Creep-fatigue: combination of cyclic load + holds at steady conditions
- Designing to the fatigue diagram can underpredict life by an order of magnitude

CREEP AND STRESS RELAXATION OCCUR AT HIGH TEMPERATURES, REQUIRING TIME-DEPENDENT ANALYSIS

Time at fixed conditions

METAL AND WORKING FLUID THERMAL PROPERTIES CONTROL THE MAGNITUDE OF THE THERMAL STRESS FOR FIXED FLUX Increasing the following does what to the thermal stress?

Increases thermal stress

- Thermal expansion coefficient
- Thickness
- Elastic stiffness

Decreases thermal stress

Thermal conductivity

Increasing convection with the fluid decreases the maximum metal temperature

KEY OBSERVATIONS ON STRUCTURAL DESIGN

EVERYTHING FAILS EVENTUALLY Key difference from low temperature design

A740H, 820° C, 20 MPa internal pressure, 1 in radius tube

- Low temperature design: structure designed to withstand the load
- High temperature design: structure designed to resist the load for a certain period of time
- Example: creep life at fixed temperature
- Subtle point about Section I/VIII ASME design: typically assume 100,000 hour properties but do not explicitly consider a design life

THICKER IS NOT BETTER

- Unlike low temperature design based on pressure only you can't design your way out by increasing the section thickness
- Two competing design limits:
 - Pressure: increasing thickness improves creep rupture/plastic collapse
 - Thermal stress: decreasing thickness improves fatigue/creep-fatigue

CIRCUMFERENTIAL THERMAL GRADIENTS ARE WORSE THAN NET THERMAL EXPANSION

bending Caused by: flux distribution Could be alleviated by: ?? Net axial expansion *Caused by:* net tube temperature increase Could be alleviated by: bellows Maximum incident flux In our experience circumferential bending is much more challenging

10 than net tube expansion

Circumferential

THE STRENGTH OF NI-BASED ALLOYS DROPS OFF PAST \sim 775°C Shift in precipitation kinetics significantly reduces γ' phase nucleation and growth

Change associated with shift from work hardening to perfectly-plastic behavior

A740H 250000 200000 150000 100000 50000 \cap 700 C 850 C Design fatigue cycles at 0.25% strain range, A617 15000 10000 5000 0 704 C 871 C 950 C

Design fatigue cycles at 0.25% strain range,

POTENTIAL SOLUTIONS

ACCEPT A LOWER OUTLET TEMPERATURE OR USE A "BETTER" WORKING FLUID Not an ideal solution, but certainly feasible

Reference A740H salt receiver as a function of outlet temperature (fixed flux, 1D analysis)

Reference A740H salt receiver as a function of working fluid convective heat transfer coefficient (fixed flux, 1D analysis)

DISTRIBUTE THE DAMAGE MORE UNIFORMLY Repair and replace tubes, structural health monitoring

Tube damage fraction at end of life

- Peak damage occurs only in a limited number of tubes in the receiver
- Remaining tubes have substantial residual life
- Take advantage of that:
 - Monitor development of damage in tubes
 - Repair/replace when required
- Design changes to accommodate this strategy?
- In situ health monitoring (digital twin)?

DISTRIBUTE THE FLUX MORE UNIFORMLY Cavities, reflectors, dynamic aiming

Argonne 🦨

800.

790.

USE NEW MATERIALS WITH BETTER CREEP/CREEP-FATIGUE RESISTANCE AT TEMPERATURE

- Ceramic based-materials maintain creep • strength to much high temperatures, when compared to Ni-based superalloys
 - Creep strength fairly well established (albeit at higher temperatures)
 - Creep-fatigue (or fatigue) strength less studied
- There are other candidate metallic material systems:
 - HEAs
 - **ODS** alloys
 - Co superalloys
- Substantial practical challenges: •
 - Forming (AM?)
 - Joining
 - Thermal properties (for *some* ceramics)
- Additional challenge: design practices for nonductile materials

Receiver Operations and Solar Field Integration

Mike Wagner, PhD, University of Wisconsin-Madison Contributors: T. Neises, J. Martinek, W. Hamilton (NREL), M. Kirschmeier, S. Sullivan (Brayton)

- 1. The role of allowable flux in receiver design
- 2. Heliostat optics and desired flux profiles
- 3. Influence of spillage loss on receiver design
- 4. Impact of non-ideal receiver flow control
- 5. Considering multiple receiver targets

Allowable flux drives receiver design

- Allowable flux in a fluid-based receiver (gas, liquid) depends on temperature & pressure
- Design decisions can include tube thickness, for example
- Allowable flux is generally higher for thick-walled tubes of a given diameter due to improved stress resistance, but sacrifices pressure drop
- Reproducing allowable flux limit profile *exactly* during operation maximizes thermal efficiency

Not all ideal flux profiles can be realized

- Consider "triangular" ideal flux profile with max at receiver vertical centerline:
 - Spillage loss can be reduced by shifting heliostat images at edge toward the center
 - Ideal flux is not met near edge of receiver
 - Mass flow set to maintain max local material temperature
 - Temperature at outlet does not meet target!
- Receiver size can be increased to maintain desired profile shape
 - Less efficient / more expensive

More complex profiles may violate local flux limit

- How does simulated flux profile vary with the *complexity* of the desired flux profile?
- Dependent on:
 - Heliostat characteristics
 - Field size vs size of geometry features

Field efficiency and flux "quality" compete

Increasing offset of images from receiver edge \rightarrow

What is the impact of receiver startup?

Consider possible operation during transients

- Do operational considerations impact receiver design?
- How quickly might conditions change during operation?
- Can the receiver operate through flux transients?

Receiver Transient Operation

Static aiming

Ideal mass flow control risks receiver burnout

Receiver in 1

Receiver in 2

Receiver out 1

Receiver out 2

Downcomer

- Control based on clear sky DNI is safest •
- Inaccurate models significantly reduce ٠ long-term performance
- More work on improved flow / ٠ temperature control is needed

Flux control for receivers with multiple targets

- Consider north-only field with top, middle, bottom targets of equal size
- · Heliostats are optimally assigned based on optical performance
- We manually reassign optimal target using a randomized factor

0.20

0.06

0.00

Multiple targets balance flux uniformity with overall field efficiency

Summary

- Allowable flux is local, depends on fluid conditions, and determines optical requirements from the field
- Heliostat field modeling can help determine ideal flux profile feasibility and should be considered in preliminary work
- The most optically efficient heliostat field may not produce a feasible flux profile
- There is a need for standardized optical characterization and acceptance of heliostats
- Receiver startup, shutdown, and ramping limits can have a large impact on productivity
- Design is not complete until off-design is considered
- Hourly irradiance data does not capture full receiver boundary condition variability
- Consider methods for and impact of controlling mass flow under variable irradiance

Contact info: <u>mike.wagner@wisc.edu</u> +1 (608) 890-1910 wagner.wiscweb.wisc.edu

Impactful R&D for Technology Adoption

SETO CSP Virtual Workshop on Next Generation Receivers 29 October 2020 David Wait, Nooter/Eriksen

WO D'S LEADING SUPPLIER OF HEAT RECOVERY STEAM GENERATORS

THE

How to travel the path to commercial success?

Does Proven technology = commercial success?

How do you measure readiness?

https://arena.gov.au/assets/2014/02/Commercial-Readiness-Index.pdf

How to traverse the "valley of death"?

Think like a supplier:

- Guaranteed performance level
- Warranty and reliability
- Competitive awareness

Think like a contractor:

- Lowest cost option
- Construction schedule
- Integration

Think like an owner:

- Performance
- Operations & Maintenance costs
- Availability

Think like an investor/lender:

- High rate of return
- Low risk of failure

What to consider early in development?

Operability

- Means to monitor operating limits in real-time
- Effects of system interactions
- Automatic "operator-proof" control
- Equipment sizing for startup /shutdown

Scalability

- Material availability
- Production-scale quality management
- Construction
 methods
- Heat loss
- Margin for guaranteed performance

Market Adoption

- Competition
- Standards for design and acceptance testing
- Initial investment
- Health, safety, & environmental risks
- Failure modes
- "Lessons learned"

Cost

- Quality of potential supplier's quotes
- Completeness of requirements
- System-level thermo-economic optimization
- Performance margin
- Realistic pro forma financial assumptions

And what to avoid...

Thank You!

