Receiver Operations and Solar Field Integration

Mike Wagner, PhD, University of Wisconsin-Madison Contributors: T. Neises, J. Martinek, W. Hamilton (NREL), M. Kirschmeier, S. Sullivan (Brayton)

- 1. The role of allowable flux in receiver design
- 2. Heliostat optics and desired flux profiles
- 3. Influence of spillage loss on receiver design
- 4. Impact of non-ideal receiver flow control
- 5. Considering multiple receiver targets

Allowable flux drives receiver design

- Allowable flux in a fluid-based receiver (gas, liquid) depends on temperature & pressure
- Design decisions can include tube thickness, for example
- Allowable flux is generally higher for thick-walled tubes of a given diameter due to improved stress resistance, but sacrifices pressure drop
- Reproducing allowable flux limit profile *exactly* during operation maximizes thermal efficiency

Not all ideal flux profiles can be realized

- Consider "triangular" ideal flux profile with max at receiver vertical centerline:
 - Spillage loss can be reduced by shifting heliostat images at edge toward the center
 - Ideal flux is not met near edge of receiver
 - Mass flow set to maintain max local material temperature
 - Temperature at outlet does not meet target!
- Receiver size can be increased to maintain desired profile shape
 - Less efficient / more expensive

More complex profiles may violate local flux limit

- How does simulated flux profile vary with the *complexity* of the desired flux profile?
- Dependent on:
 - Heliostat characteristics
 - Field size vs size of geometry features

Field efficiency and flux "quality" compete

Increasing offset of images from receiver edge \rightarrow

What is the impact of receiver startup?

Consider possible operation during transients

- Do operational considerations impact receiver design?
- How quickly might conditions change during operation?
- Can the receiver operate through flux transients?

Receiver Transient Operation

Static aiming

Ideal mass flow control risks receiver burnout

Receiver in 1

Receiver in 2

Receiver out 1

Receiver out 2

Downcomer

- Control based on clear sky DNI is safest •
- Inaccurate models significantly reduce ٠ long-term performance
- More work on improved flow / ٠ temperature control is needed

Flux control for receivers with multiple targets

- Consider north-only field with top, middle, bottom targets of equal size
- · Heliostats are optimally assigned based on optical performance
- We manually reassign optimal target using a randomized factor

0.20

0.06

0.00

Multiple targets balance flux uniformity with overall field efficiency

Summary

- Allowable flux is local, depends on fluid conditions, and determines optical requirements from the field
- Heliostat field modeling can help determine ideal flux profile feasibility and should be considered in preliminary work
- The most optically efficient heliostat field may not produce a feasible flux profile
- There is a need for standardized optical characterization and acceptance of heliostats
- Receiver startup, shutdown, and ramping limits can have a large impact on productivity
- Design is not complete until off-design is considered
- Hourly irradiance data does not capture full receiver boundary condition variability
- Consider methods for and impact of controlling mass flow under variable irradiance

Contact info: <u>mike.wagner@wisc.edu</u> +1 (608) 890-1910 wagner.wiscweb.wisc.edu