

Liquid Pathway Receiver Design: Molten Salt and Liquid Sodium

Craig Turchi, PhD Thermal Energy Science & Technologies Group National Renewable Energy Laboratory craig.turchi@nrel.gov

- *Gen3 Liquid Pathway* project seeks to demonstrate potential of chloridebased molten salt for energy storage at > 700°C.
- Chloride salt's high freeze point and poor thermal conductivity are challenges for use in a solar receiver.
- Project evaluated molten chloride salt and liquid-metal sodium as alternatives for a liquid receiver at > 700°C operation.

Australian Solar Thermal Research Institute

Gen3 Heat Transfer Fluids vs. Current Solar Salt

Alloy Strength with Temperature

Critical to Maintain Flux within Allowable Limits

Rethink Conventions

The bottom flow circuit limits the co-incidence of high-flux and high-temperature and the expected design life increases 5-6x versus the conventional (top) design.

Creep / Fatigue Analysis

Solar Central Receivers:

- Aren't technically *pressure vessels* (no primary load)
- Diurnal cycling (of secondary load) means failure by:
 - ► Fatigue <600 °C
 - Creep-fatigue 600 °C to ≈750 °C
 - Creep ≈750 °C to 850 °C

- Logie, "Structural Integrity of Advanced Solar Central Alloy 740H Receiver Tubes" SolarPACES 2020
- Bipul Barua et al., "Design Guidance for High Temperature Concentrating Solar Power Components," Argonne National Laboratory, Technical Report ANL-20/03, 2020.

Design Methods for Creep-defined Systems

Simpler and conservative

- 1. Design by elastic analysis using ASME Section III, Division 5
- 2. Design by elastic analysis using ASME Section III, Division 5 with reduced margin and simplified creep-fatigue evaluation
- More complex and more accurate
- 3. Design by inelastic analysis

- Logie, "Structural Integrity of Advanced Solar Central Alloy 740H Receiver Tubes" SolarPACES 2020
- Bipul Barua et al., "Design Guidance for High Temperature Concentrating Solar Power Components," Argonne National Laboratory, Technical Report ANL-20/03, 2020.

Pilot Scale Objectives

- Demonstrate operational control and reliability
 - Fill, control transients, drain, repeat
- Validate model results with performance data
 - Heat transfer coefficients
 - Temperatures (fluid and tube)
 - Ramp rate behavior
- Freeze recovery
- Corrosion rates and creep damage

Proposed Integrated System Design

Summary

- Start with commercial design, use that to define what the pilot-scale system needs to do.
- > 700°C requires creep-regime analysis. Detailed inelastic analysis is necessary for accuracy and to avoid overly conservative limits.
- Material availability, code qualification, physical data, welding knowledge, etc. can be constraining.
- Transient operations will be the challenge.
- Rethink convention

Thank you!

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Supporting Slides

CSP Heat Transfer Fluids

Parameter	Solar Salt (Gen2)	Chloride Salt (Gen3)	Liquid Sodium (Gen3)
Composition	Binary NaNO ₃ -KNO ₃	Ternary MgCl ₂ -KCl-NaCl	100% Na
Freezing Point (°C)	~238	~400	98
Volume change on melting	+3.3%	+20%	+2.6%
Stability Limit (°C)	~600	> 900	882 (bp)
Density (kg/m ³)	1770 @ 500°C	1560 @ 700°C	835 @ 700°C
Specific Heat (J/g-K)	1.53 @ 500°C	0.98 @ 700°C	1.26 @ 700°C
Viscosity (cP)	1.30 @ 500°C	2.28 @ 700°C	0.24 @ 700°C
Thermal Cond. (W/m-K)	0.54 @ 500°C	0.42 @ 700°C	64.2 @ 700°C
Major Concerns	NO _x formation Thermal stability	High freeze point Corrosion	Burns in air

Benefit Scoring (Higher Scores = Higher Benefit)

Risk Scoring (Higher Scores = Higher Risk)

- Sodium case estimated at 11% lower LCOE
- Sodium case had better Benefit/Risk ratio: Sodium = 1.19, Salt = 0.86
- Team selected the Sodium Receiver design