

Include together // eoole // Dieces // INTEGRATED Innovations Enabling CSP SYSTEM a Gen3 Gas-Phase Receiver

29 October 2020

Shaun Sullivan Principal Investigator, Gen3 Gas Phase Renewables R&D Program Manager sullivan@braytonenergy.com

FrBraytonEnergy

an innovative R&D firm dedicated to making meaningful contributions in the field of environmentally responsible, sustainable energy production

- Turbomachinery
- Compact Heat Exchangers
- Distributed Generation/CHP
- Concentrating Solar
- Alternative Fuels
 Nuclear
- Energy Storage
- Combustion
- Hybrid Vehicles
 UAVs

- Develop a 100 MW_e commercial system that can absorb, store, and dispatch concentrated solar energy to a working fluid at conditions commensurate with an sCO₂ power cycle (700 °C, 25 MPa)
- Design a Megawatt-scale test facility to demonstrate and de-risk the technology innovations embodied in the commercial design
 - Phase 1 (October 2018-December 2019)
 - System specification, design, modeling, analysis
 - Phase 2 (January 2020-March 2021)
 - Component-level testing
 - Test facility design

r Brayton Energy

- Phase 3 (October 2021-October 2024)
 - Test facility final design, construction, commissioning, operation, and testing

A Quick Tour: Gen3 Gas Phase Receiver

Introduction • <u>Receiver Tour</u> • Flux Profiling • Emerging Materials • System Optimization

ArBraytonEnergy

Maximizing the Utilization of Materials

Flux Profiling

ArBraytonEnergy

- Aim point selection incorporated into GEN3 system
 - Selection based on matching a prescribed user flux profile
- Ability to achieve desired flux profile depends on complexity of desired profile for:
 - Given heliostats (optical errors)
 - Receiver geometry
 - Field size

Innovative Heliostat Field Control

Single Tube Structural Model Results

ASME Section II Allowable Stress

Receiver Life Results

	Cycle Type 1	Cycle Type 2
Parameter	Start-up/	Cloud
	Shut-down	Event
lastic strain range, Δεe	0.000375	0.00019
Creep strain per cycle, Δεc	1.72987E-07	0
otal strain range,Δε _τ	0.00061	0.00002
Design Allowable Cycles, Nd	5.22E+13	2.10E+15
Design Cycles, n	10950	109500
Cycle Damage Fraction	2.10E-10	5.22E-11
otal Fatigue Damage Fraction	2.6198E-10	

✓ CREEP-FATIGUE

Special Metals In740H

- Receiver design entirely enabled by the advent of In740H •
 - H282 is an even more promising prospect with active AM development, but is not yet code qualified ۲

Integrated System Modeling

- The Gen3 Gas Phase leverages the baseload power block as the heat transfer fluid circulator during TES charging operation
 - Minimizes capital costs
 - Imposes a pressure drop penalty during on-sun operations

r Brayton Energy

Independent studies evaluated the impact of this pressure drop

LCOE Optimization and Specific Cost Functions

Optimal System Design Accepts Elevated DP

- An integrated analysis that does not presuppose "foregone conclusions" can lead to nonintuitive results
 - i.e. LCOE is minimized by optimizing the power block around a high on-sun PHX DP/P, and allowing it to operate at low DP/P during off-sun hours
 - This strategy also enables system integration with AUSCS cycles, which are significantly less sensitive to PHX DP/P
 - System stability demonstrated via detailed turbomachinery mapping and cycle analysis

r BraytonEnerg)

Shaun Sullivan Principal Investigator, Gen3 Gas Phase Renewables R&D Program Manager sullivan@braytonenergy.com

Gen3CSP

Bringing together the people and the pieces for an

Thank You

We gratefully acknowledge the support and funding of the United States Department of Energy Office (via DE-EE0008368) without which this work would not have happened.