

Oregon State University

Impactful R&D for Technology Adoption

Brian M. Fronk Solar Technology Office CSP R&D Virtual Workshop Series October 29th, 2020

COLLEGE OF ENGINEERING School of Mechanical, Industrial, and Manufacturing Engineering

Scaling Innovations

Modular, micro-pin receivers can enable high efficiency and high temperature solar processes, but with significant manufacturing challenges.

Separate Effects Investigation

Materials
Fabrication Methods
Thermal and Mechanical

Mitigate Integrated Manufacturing Risks

Prototype Demonstration

Manufacturing Risks

Potential Missed Risks

- Process limitations on design
- Availability of process capability
- Cost of demonstration/developing process
- Unexpected interactions between processes

Banking Innovation

Ideal World:

- Develop manufacturing process
- Validate each step in processes
- Build multiple production prototypes

Example Approach - Challenges

Failure due to interaction with diffusion bonded surface

Brazing/Welding

- Headers-to-plate
- Proof test (pass)
- Destructive test(pass)

Manufacturing \rightarrow 10 MWe

Ideal World:

- Build multiple production prototypes
- Conduct reliability tests (e.g., temperature/pressure cycling)

Potential R&D Challenges:

- Requires "final" design
- Expensive
- Time consuming
- Who is going to do it?
- Small volume in CSP \rightarrow tool investment

Material/Mechanical Life Risks

Potential Missed Risks

- "Exotic" materials
- Limited experience (machining, forming, joining, etc.)
- Limited base material data at conditions
- Limited/no data on joints
- Extreme operation (difficult to replicate)
- Standards (ASME, UL) haven't caught up

Banking Innovation \rightarrow Materials/Mechanical

Potential R&D Challenges:

- Fund material data tests (similar to corrosion round robin in NE)
- Dedicated studies on joints and joint properties
- Develop centralized reliability testing capability (e.g., SNL)
- Develop industry informed CSP specific standards for receivers

Closing Thoughts

- Unexpected challenges from proofof-concept to engineering prototype
- Manufacturing considerations should start day 1
- Coordinated effort on material properties
- Coordinated effort on joining technology and properties
- Share failures and success

Acknowledgments

Oregon State

Dr. M. Kevin Drost Dr. Brian Paul Dr. Rajiv Malhotra (now Rutgers) Dr. Sourabh Apte Patrick McNeff, Hank Pratte, Nasim Emadi, Thad Rhan, Bryan Siefering, Brian Blasquez, Seth O'Brien

UC-Davis

Dr. Vinod Narayanan Dr. Erfan Rasouli

NETL

Dr. Omer Dogan Dr. Kyle Rozman

Haynes International Vacuum Process Engineering

References

- McNeff, P. S., Paul, B. K., Doğan, Ö. N., Rozman, K. A., Kissick, S., Wang, H., Drost, M. K., Fronk, B. M. (2019), "Practical Challenges and Failure Modes During Fabrication of Haynes 230 Micro-Pin Solar Receivers for High Temperature Supercritical Carbon Dioxide Operation," 3rd European Supercritical CO₂ Conference, Paris, France, 19-20 September. <u>10.17185/duepublico/48901</u>
- 2. Rasouli, E., Mande, C. W., Stevens, M. M., & Narayanan, V. (2019). On-Sun Characterization of Microchannel Supercritical Carbon Dioxide Solar Thermal Receivers: Preliminary Findings. *ASME Energy Sustainability Conference*, Bellevue, WA, 14-17 July. <u>10.1115/ES2019-3898</u>
- 3. Narayanan, V., Fronk, B. M., L'Estrange, T., & Rasouli, E. (2019). Supercritical Carbon Dioxide Solar Thermal Power Generation—Overview of the Technology and Microchannel Receiver Development. In *Advances in Solar Energy Research* (pp. 333-355). Springer, Singapore. <u>10.1007/978-981-13-3302-6 11</u>
- 4. Hyder, M. B., Fronk, B. M., (2018), "Simulation of Thermal Hydraulic Performance of Multiple Parallel Micropin Arrays for Concentrating Solar Thermal Applications with Supercritical Carbon Dioxide", *Solar Energy*, 164, pp. 327-338. <u>10.1016/j.solener.2018.02.035</u>
- 5. Fronk, B.M., Jajja, S. A., (2018), "System and Component Transport Consideration of Micro-Pin Based Solar Receivers with High Temperature Gaseous Working Fluids," *ASME 15th International Conference on Nanochannels, Microchannels and Mini Channels*, Dubrovnik, Croatia, 10-13 June. <u>10.1115/ICNMM2018-7614</u>
- 6. Kapoor, M., Doğan, Ö. N., Carney, C. S., Saranam, R. V., McNeff, P., & Paul, B. K. (2017). Transient-liquidphase bonding of H230 Ni-based alloy using Ni-P interlayer: microstructure and mechanical properties. *Metallurgical and Materials Transactions A*, *48*(7), 3343-3356. <u>10.1007/s11661-017-4127-5</u>
- Zada, K. R., Hyder, M. B., Drost, M. K., Fronk, B. M., (2016), "Numbering-up of Microscale Devices for Megawatt Scale Supercritical Carbon Dioxide Concentrating Solar Power Receivers," ASME Journal of Solar Energy Engineering, 138(6), pp. 061007-061007-9. <u>10.1115/1.4034516</u>

Questions?

Brian.Fronk@oregonstate.edu

