NASHVILLE DISTRICT CAPITAL IMPROVEMENT MASTER PLAN FOR HYDROPOWER

Ryan Frye, P.E. Hydropower Section LRN Operations Division

Team Cumberland Brief 02 November 2020

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

CAPITAL IMPROVEMENT MASTER PLAN FOR HYDROPOWER

NASHVILLE DISTRICT

- The purpose of this Capital Improvement Master Plan for Hydropower is to serve as a guide for the long-term sustainability and development of the Nashville District's hydropower facilities through capital improvements.
- It is a comprehensive 20-year project plan and associated 5-year construction work plan that covers non-routine maintenance, rehabilitation or modernization of the Cumberland River hydropower system in Nashville District.
- It provides an overview of each power plant and its hydropower production, past projects, existing conditions, and scopes, schedules and budgets of future projects.
- The Plan establishes the scope, schedule and budgets for the management and control of the Cumberland River System Hydropower Rehabilitation Program.

- I. Purpose and Objectives
- II. Hydropower Program Overview
- III. Description of Components / Asset Management
- IV. Program and Funding Overview
- V. Program Implementation
- VI. Ranking Methodology
- VII. Cost Estimating
- VIII.5 Year Plan
- IX. 20 Year Plan
- X. Nameplate Data and Five Year Performance
- XI. Individual Powerplant Development Plans

RANKING METHODOLOGY

- $Score = W_1C_1 + W_2C_2 + W_3C_3A_E$
- W_{1-3} are weights assigned to the ranking criteria C_1 is the condition factor C_2 is the criticality factor C_3 is the consequence factor A_F is the energy loss factor
- For Section 212-funded projects, W_{1} , W_{2} , W_{3} were each set at 0.33.
- For O&M-funded projects, W_1 was set at 0.75, and W_2 and W_3 were each set at 0.125.
- Condition was rated using HydroAMP scoring transposed to a 0 1 scale.
- Criticality was scored 1.00 (critical for power generation) or 0.25 (critical for plant operation).
- Consequence was standardized to reflect higher values for longer periods of forced outage, with each project fitting into one of six categories.
- The Energy Loss Factor represents the incremental annual energy production.

TOP TEN PROJECTS (SECTION 212)

5

SEC 212 Funding Rank	Work Item ID	Plant/System	Project Name	Start FY	Finish FY	Program Amount (\$)	MOA/SA
0	OLD02	Old Hickory	Turbine/Generator	1Q21	3Q29	\$ 125,000,000	ST 6-10
1	CHE04	Cheatham	Medium Voltage Cables & Busses	2Q20	3Q23	\$ 3,530,000	LT 9-10
2	SYS05.05	Wolf Creek	Main Power Transformer	2Q20	4Q24	\$ 16,200,000	LT 9-10
3	CEN04	Center Hill	Medium Voltage Cables & Busses	2Q20	1Q23	\$ 7,100,000	LT 9-10
4	SYS06.05	Wolf Creek	Excitation	1Q22	4Q25	\$ 10,650,000	LT10-11
5	PgM 1.008	Program	Program Management Year 7	3Q22	4Q23	\$ 1,100,000	LT 10
6	SYS13.03	Wolf Creek	DC / Preferred AC System	4Q22	1Q24	\$ 4,100,000	LT11
7	WOL22	Wolf Creek	Powerhouse Crane	3Q22	3Q24	\$ 3,200,000	LT11
8	WOL02	Wolf Creek	Turbine/Generator	3Q22	3Q33	\$ 200,000,000	ST 11-18
9	WOL04	Wolf Creek	Medium Voltage Cables & Busses	2Q24	4Q26	\$ 13,300,000	LT 11-12

TOP TEN PROJECTS (APPROPRIATIONS)

6

Appropriated Funding Rank	Plant	Identifier	WBS	ROM (FY21 estimate)
1	Cordell Hull	Centralized Control	COR.18	\$1,200,000
2	Old Hickory	Centralized Control	OLD.18	\$1,700,000
3	Wolf Creek	Centralized Control	WOL.18	\$2,300,000
4	Cordell Hull	Oil Systems	COR.33	\$283,592
5	Dale Hollow	Cooling Water System	DAL.17.01	\$3,585,721
6	Wolf Creek	HVAC	WOL.21	\$6,259,647
7	Cordell Hull	Intake Gantry Crane	COR.01	\$11,371,109
8	Barkley	Compressed Air Systems	BAR.24	\$152,841
9	Barkley	Switchyard Equipment	BAR.15	\$8,446,765
10	Cheatham	Cooling Water System	CHE.17.01	\$3,585,721

