

U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office and Global Perspectives

Dr. Sunita Satyapal
Director, Hydrogen and Fuel Cell Technologies Office

ICEF 7th Annual Meeting – September 28, 2020

Hydrogen is one part of a Comprehensive Energy Portfolio

H2@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

Hydrogen can address specific applications across sectors

Today: 10MMT H₂ in the U.S.

Economic Potential: 2 to 4x more

Hydrogen and Fuel Cell Technology Growth Worldwide

25-fold increase in electrolyzers deployed in the last decade

<1MW in 2010 to >25 MW by end of 2019

Global FCEVs doubled to >25,200 >12.3K sold in 2019 vs. 5.8K in 2018

470 H₂ fueling stations worldwide > 20% increase from 2018

Source: IEA (2020), Hydrogen, IEA, Paris, https://www.iea.org/reports/hydrogen

Source: E4tech for DOE analysis project

Snapshot of Hydrogen and Fuel Cells Applications in the U.S.

Examples of Applications

>500MW

Stationary Power

>35,000

Forklifts

>60

Fuel Cell Buses

>45

H₂ Retail Stations

>8,800

Fuel Cell Cars

Hydrogen Production Across

Hydrogen Stations: Examples of Plans Across States

California

200 Stations Planned **CAFCP Goal**

Northeast

12 - 20**Stations Planned** HI, OH, SC, NY, CT, MA, CO, UT, TX, MI **And Others**

Roadmaps and Plans have Common Strategies

Drivers include: Energy security, energy efficiency & resiliency, economic growth, innovation & technology leadership, and environmental benefits

Strategies

- Scale up technologies in key sectors
- Continue R&D to reduce cost and improve performance, reliability
- Address enablers: harmonization of codes, standards, safety, global supply chain, workforce development, sustainable markets

Examples of H2@Scale Analysis and Demonstration Projects

Assessing resource availability. Most regions have sufficient resources.

Hydrogen Availability Hydrogen Potential From Photovoltaic and Onshore Wind Resources Minus Maximum Market Potential for the Industrial & Transport Sectors, Natural Gas and Storage (Oil Refining, Ammonia, Metals, Biofuels, Natural Gas, Synthetic Fuels & Chemicals. ight-duty FCEVs, Other Transportation, and Grid Storage Preliminary Results **Nuclear Energy Plants CNREL** Currently Operating Announced Retirement Recently Retired Red: Only regions where projected industrial & transportation demand exceeds supply.

New H2@Scale demonstration projects cover range of applications

*Includes 1 project by Office of Nuclear Energy

R&D focus is on Affordability and Performance: DOE Targets Guide R&D

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements - guided by applications specific targets

Fuel Cell R&D

[†]Based on commercially available FCEVs

[†]Storage costs based on preliminary 2019 storage cost record

Hydrogen R&D

[†]For range: H2 production from natural gas (NG), delivered dispensed at today's (2018) stations

^{*}Based on state of the art technology

^{**}Based on commercial FCEV analysis at 3,000/yr

^{*}For range: Assumes high volume manufacturing in 1) H2 production costs ranging from \$2/kg (NG) to \$5/kg (electrolysis manufactured at 700 MW/year), and 2) Delivery and dispensing costs ranging from \$3/kg (advanced tube trailers) to \$5/kg (liquid tanker or advanced pipeline technologies). ** Range assumes >10,000 stations at 1,000 kg/day capacity, to serve 10 million vehicles

Electrolysis Cost – Recent Independent Analyses

Today's Polymer Electrolyte Membrane (PEM) electrolyzers require 65 75% cost reduction

\$2/kg H2 is achievable at about \$0.03/kWh electricity cost and high utilization

Today's hydrogen cost from PEM electrolyzers: ~ \$5 to \$6/kg at \$0.05 to \$0.07/kWh

Identifying Hydrogen Cost Drivers is Key

H₂ Production (Electrolysis) Cost Drivers: **Electrical** energy and capital costs

H₂ Onboard Storage Cost Drivers:

Carbon Fiber Precursors and **Processing**

Hydrogen Storage Cost (Onboard 700 Bar Hydrogen Storage Vessel)

Hydrogen Infrastructure Cost

(700 Bar Hydrogen Station)

H₂ Infrastructure Cost Drivers: **Compressors and Storage**

Note: Updates to be published May, 2020

Life Cycle Analyses Underway – Example

Examples of Global Collaboration

Coordinating across global partnerships: IPHE, Ministerials, Mission Innovation, IEA, etc. Global Center for Hydrogen Safety established to share best practices, training resources and information

The International Partnership for Hydrogen and Fuel Cells in the Economy

Enabling the global adoption of hydrogen and fuel cells in the economy

Elected Chair and Vice-Chair, 2018

New Chair: Dec 2020: The Netherlands Vice Chairs: U.S. Japan

Activities: Harmonization of codes & standards. Information sharing on safety, policies, regulations, analysis, education.

Task force on developing H₂ production analysis methodology to facilitate international trade, global RD&D monitoring

Hydrogen and Clean Energy Ministerials

Mission Innovation Hydrogen Challenge

International **Energy Agency**

www.iphe.net

Includes over 40 partners from industry, government and academia

Connecting a Global Community

www.aiche.org/CHS

Access to >110 countries, 60.000 members

Examples of Activities

U.S. DOE "STEM RISING" activities promote awareness and engagement

https://www.energy.gov/women

IPHE Education & Outreach Working Group fosters engagement in H₂ and fuel cells

#IPHEInfographicChallenge

Submit your entry by
Oct 8 to
media@iphe.net
Learn more
IPHE.net/challenge

Students (ages 13-18 yrs) from IPHE member countries can design an Infographic on H₂ and fuel cells

Join the IPHE Early Career Group to promote awareness, increase networking and career development

University events at IPHE member country meetings, poster awards and outreach

Follow @the_iphe

IPHE Fellows Program for Students/Postdocs to promote opportunities & foster leadership development

Thank You

Dr. Sunita Satyapal

Director, DOE Hydrogen and Fuel Cells Program

Sunita.Satyapal@ee.doe.gov

Looking for more info?

#H2IQ

hydrogen.energy.gov

Examples of H2@Scale Demonstration Projects - 2019

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Texas

Wind, Solar, RNG/Waste

Florida

Total budget \$9.1M

Solar-to-H₂ with End Uses

Site selection in process

Total Budget \$7.2M Nuclear-to-H₂ for at-Plant Use

Total Budget

\$10.8M

Examples of H2@Scale Demonstration Projects -2020

Demonstration of H2@Scale: Different regions, hydrogen sources and end uses

Marine Application

Total Budget \$16M Electrolyzer and fuel cell for marine application

H₂ for Data Center

Total Budget \$13.7M PEM fuel cell for data center power

H₂ for Steel Production

Total Budgets \$5.7M & \$7.2M

DRI-process and grid-interactive steelmaking

