

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Resource Assessment for Hydrogen Production

Elizabeth Connelly, Ph.D.

June 10, 2020

Outline

- Background
- Objectives
- Assumptions and Data Sources
- Results
 - Technical Potential
 - Electricity Consumption
 - Water Consumption
- Future Work

Background – H2@Scale

H2@Scale concept: enabling affordable, reliable, clean, and

H2@Scale Analysis:

National Laboratory (NREL, ANL, INL) effort

- 1. Resource Assessment for Hydrogen Production
- 2. Hydrogen Demand Analysis
- 3. Analysis of Economic Potential of
 - Hydrogen Production and Utilization

More information at: <u>www.energy.gov/eere/fuelcells/h2-scale</u>

Resource Assessment Objectives

- Inform H2@Scale analysis on technical resource potential
 - Estimate total hydrogen production potential from multiple energy resources
 - Are there sufficient domestic resources to be able meet the technical hydrogen demand (estimated in the H2@Scale analysis)?
- Estimate the quantity of domestic energy resources required to meet an incremental increase in hydrogen demand in the future of 10 MMT of hydrogen annually
 - Represents a doubling of annual hydrogen consumption by 2040 [additional 10 MMT/yr]
 - Compare those requirements to the projected future consumption of each resource

Summary of Results

Resource	Hydrogen Production Potential (MMT)*	Percent of Resource Potential to Produce 10 MMT H ₂
Natural Gas	17,800	0.06%
Coal	50,100	0.02%
Nuclear (Uranium)	2,900	0.4%
Resource	Hydrogen Production Potential (MMT/yr)*	Percent of Annual Resource Potential to Produce 10 MMT H ₂ /yr
Biomass	50	17.5%
Wind	800	1.4%
Solar	5,200	0.2%
Water Power	50	20.5%
Geothermal	490	2.1%

* Fossil and uranium production potentials are based on reserves; renewable production potentials are based on previous analyses of technical potential. There is some inherent variability among the underlying data sources used for these calculations.

Assumptions & Data Sources

Summary of Data Sources

Consumption		Rate
	EIA AEO Assumptions (2019) Proved + Unproved Reserves	H2A
	EIA Annual Coal Report (2019) Demonstrated Reserve Base	NETL (2010) Case Study
	EIA Uranium Production Report (2019) <\$100/lb U ₃ O ₈	Jim O'Brien (INL) – systems modeling of HTGR
2019 EIA Annual	Solid biomass: Billion-Ton Report (DOE 2016) Gaseous biomass: NREL analysis (Milbrandt et al. 2018)	H2A (solid) NREL (biomethane)
Energy Outlook 1) Reference Case	Land-based: NREL reV model Offshore: NREL 2016 Offshore Wind Energy Resource Assessment	H2A
2) Low Oll and Gas Resource and Technology Case	UPV: NREL reV model Rooftop PV: NREL analysis (Gagnon et al. 2016) CSP: NREL Potential Role of CSP (Murphy et al. 2019)	H2A
	EHA: ORNL Hydrosource NPD: ORNL Non-Powered Dam Assessment NSD: ORNL New Stream Reach Development Assessment MHK: Table 4.N.2, Quadrennial Technology Review (2015)	H2A
	GeoVision Analysis Supporting Task Force Report	H2A
	2019 EIA Annual Energy Outlook 1) Reference Case 2) Low Oil and Gas Resource and Technology Case	2019 EIA Annual EIA AEO Assumptions (2019) Proved + Unproved Reserves 2019 EIA Annual EIA Uranium Production Report (2019) <\$100/lb U ₃ O ₈ 2019 EIA Annual Solid biomass: Billion-Ton Report (DOE 2016) 2019 EIA Annual Solid biomass: NREL analysis (Milbrandt et al. 2018) 2019 EIA Annual Solid biomass: NREL analysis (Milbrandt et al. 2018) 2019 EIA Annual Solid biomass: NREL analysis (Milbrandt et al. 2018) 2019 EIA Annual Solid biomass: NREL analysis (Milbrandt et al. 2018) 2019 EIA Annual Solid biomass: NREL rev model 2019 EIA Annual Coffshore: NREL 2016 Offshore Wind Energy Resource Assessment 2019 EIA Annual Land-based: NREL rev model 2019 Case Offshore: NREL 2016 Offshore Wind Energy Resource Assessment 2019 V: NREL rev model Rooftop PV: NREL analysis (Gagnon et al. 2016) 2019 CSP: NREL Potential Role of CSP (Murphy et al. 2019) EHA: ORNL Hydrosource 2019 CORNL Non-Powered Dam Assessment NSD: ORNL Non-Powered Dam Assessment 301 ORNL New Stream Reach Development Assessment MHK: Table 4.N.2, Quadrennial Technology Review (2015) 302 OFVISION Analysis Supporting Task Force Report MHK

Comparison of Fossil and Uranium Reserves

Comparison of Renewable Resource Technical Potentials

Comparison of Renewable Resource Technical Potentials

Technology Assumptions

Resource	Conversion Pathway	Amount to Produce 1 kg	; Hydrogen ^a	Production Efficiency ^b (E _{out} /E _{in} , LHV)
Natural gas	Steam methane reforming	167 scf	165 MJ	73.0%
Coal (bituminous)	Coal gasification	8.6 kg	226 MJ	53.3%
Nuclear (uranium)	High-temperature electrolysis	4.62×10⁻⁵ kg U	240 MJ	50.2%
Biomass	Biomass gasification	13.0 kg bone dry biomass	242 MJ	48.3%
Biomethane	Steam methane reforming	3.29 kg methane	165 MJ	73.0%
Wind power Solar power Water power Geothermal	Low temperature electrolysis	51.3 kWh	185 MJ	64.9%

MJ = megajoule

^a Values are derived from H2A Current or Future Central Case Studies for each resource type and from the central electrolysis case study for wind, solar, geothermal, and water power. The 167 scf per kg for steam methane reforming is derived from the future central steam methane reforming case study, assuming the GREET LHV/HHV ratio of 0.903 and EIA HHV of 1,036 Btu/scf. The coal requirement is based on NETL (2010) case 2.2, and the GREET (2018) LHV of bituminous coal of 22.6 MMBtu/ton. Uranium consumption for the nuclear high-temperature electrolysis production pathway is from personal communication with Jim O'Brien (INL). The 13.0 kg bone dry biomass is from the future central biomass gasification case study. Biomethane is assumed to have an LHV of 50 MJ/kg (Saur and Milbrandt 2014). The H2A case studies are available from the DOE H2A website: http://www.hydrogen.energy.gov/h2a_prod_studies.html.

^b Production efficiency is defined as the energy of the hydrogen out of the production process (on an LHV basis) divided by the sum of the energy into the process from the feedstock. The production efficiencies in this table do not account for any additional input feedstock consumption or electricity byproduct credits. Efficiency definitions are distinct in that resource "energy in" is in different forms, as noted in the column indicating MJ of resource required. Production efficiencies indicated for low temperature electrolysis are based on system electrical energy input (51.3 kWh, including electricity requirements for balance of plant) and nuclear efficiency is on a heat input basis.

Results

Availability, Current Consumption, and Projected Consumption for Eastil and Nuclear Poseurces

Fossil and Nuclear Resources

	Fossil and Nuclear Pathways ^a				
Resource Metric	Natural gas ^b	Coal ^c	Nuclear ^d (high temp. electrolysis)		
Resource Availability					
Technical Resource Potential	2,829 Tcf	473 B tons	353 M lb U ₃ O ₈		
Resource Consumption (without an additional 10 MMT of hydrogen production) •					
Current [2017]	27.1 Tcf	642 M tons	885 TWh		
Reference Case: 2040	33.3 Tcf	487 M tons	728 TWh		
Low Oil and Gas Resource and Technology Case: 2040	26.5 Tcf	582 M tons	798 TWh		
Required Resource for Hydrogen Production					
10 MMT of Hydrogen	1.7 Tcf	78 M tons	256 TWh		
Percent of Technical Potential	0.06%	0.02%	0.4%		
Percent Increase in 2040 Resource Consumption to Produce 10 MMT of Hydrogen					
Reference Case	5%	20%	39%		
Low Oil and Gas Resource and Technology Case	6%	17%	35%		

^a Calculations were made to determine the hydrogen quantity required. Some systems require input energy such as electricity or produce useful byproducts such as heat or electricity.

^b Natural gas technical potential is based on *Total Technically Recoverable Resources* estimates at the beginning of 2018 (Assumptions to the Annual Energy Outlook 2020, Table 2).

^c Coal technical potential is from the Demonstrated Reserve Base from the 2018 Annual Coal Report. Consumption, provided in quads by EIA, was converted to million tons using 19.44 MMBtu/ton for 2017 consumption and 19.82 MMBtu/ton for 2040 consumption (EIA 2020).

^d The nuclear production pathway for high temperature electrolysis is described above. Uranium resource technical potential is from 2018 uranium reserves at a forward-cost category of up to but less than \$100/lb U₃O₈ (2018 Domestic Uranium Production Report, Table 10).

^e Current (2017) and projected (2040) resource consumption values are from the *Reference Case* and *Low Oil and Gas Resource and Technology* scenario from the 2019 Annual Energy Outlook.

Hydrogen Production Potential from Fossil and Nuclear Resources

Resource	Resource Potenti	Hydrogen Pre	oductio	on Potential	
Fossil and Nuclear	Physical Resource	<u>Quads</u>	Hydrogen Pot	<u>ential</u>	Quads H2
Natural Gas	2,800 Trillion cubic feet	2,600	17,800 MN	/T H2	2,100
Coal	470 Billion short tons	9,500	50,100 MN	/IT H2	6,800
Uranium	400 Million lbs U_3O_8	700	2,900 MN	/IT H2	300

- Coal reserves show the highest hydrogen production potential: >50,000 MMT
- Technical potential of natural gas has increased by 35% since 2013 due to increase in EIA natural gas reserve estimates
- Uranium reserves estimate decreased by 65% since 2009 due to smaller set of properties covered by EIA survey (see backup slide for more information)
- Combined fossil and nuclear hydrogen production potential is >70,000 MMT

Nuclear Technical Potential

- There are major uncertainties associated with U.S. uranium resource estimates, and a thorough evaluation of the U.S. uranium resource base has not been conducted since 1980.
- It is estimated that uranium technical resource potential might increase by 10% if inferred resources were added to reasonably assured resource (RAR).
- New ore processing and fuel fabrication techniques may lead to increases in RAR.
- Advanced reactor designs could improve the efficiency of uranium use.
- Nuclear energy resources could be increased by reprocessing of spent uranium fuel, since the spent fuel retains about 96% of the fissile material from the original fuel.

The technical potential of nuclear resources presented in this report is likely an underestimate of long-term potential

Availability, Current Consumption, and Projected Consumption for <u>Renewable Resources</u>

	Renewable Pathways					
Resource Metric	Biomass	Wind	Solar	Water Power	Geothermal	
Resource Availability						
Annual Technical Resource Potential	800 M tons	38,000 TWh	260,000 TWh	2,500 TWh	25,000 TWh	
Resource Consumption (without an add	ditional 10 MMT o	f hydrogen product	ion) ^a			
Current [2017]	292 M tons	254 TWh	87 TWh	298 TWh	16 TWh	
Reference Case: 2040	329 M tons	382 TWh	547 TWh	307 TWh	56 TWh	
Low Oil and Gas Resource and Technology Case: 2040	337 M tons	564 TWh	885 TWh	310 TWh	58 TWh	
Required Resource for Hydrogen Proc	luction					
10 MMT of Hydrogen	143 M tons	513 TWh	513 TWh	513 TWh	513 TWh	
Percent of Annual Technical Potential	17.5%	1.4%	0.2%	20.5%	2.1%	
Percent Increase in 2040 Resource Consumption to Produce 10 MMT of Hydrogen						
Reference Case	44%	134%	94%	167%	916%	
Low Oil and Gas Resource and Technology Case	42%	91%	58%	165%	884%	

^a Resource consumption values are from the *Reference Case* and *Low Oil and Gas Resource and Technology* scenario from the Annual Energy Outlook 2019 (EIA 2019 *Renewable Energy Consumption by Sector and Source* table 17). Conversion to TWh is based on EIA average fossil fuel heat rates for electricity generation (EIA 2019f). Biomass consumption converted from quads to million short tons assuming 8,500 Btu/lb (HHV) (Lopez et al. 2012).

Technical Hydrogen Production Potential from Renewable Resources

Resource	Resource Potential		Hydrogen Production	Potential	
				Annual Hydrogen	<u>Quads</u>
<u>Renewable</u>	<u>Annual F</u>	Physical Resource	<u>Quads/yr</u>	<u>Potential</u>	<u>H2/yr</u>
Biomass	800	Million tons eq./yr	12	50 MMT H2/yr	7
Wind	37,800	TWh electricity/yr	400	700 MMT H2/yr	100
Solar	261,800	TWh electricity/yr	2,400	5,100 MMT H2/yr	700
Hydropower (conventional)	690	TWh electricity/yr	6	14 MMT H2/yr	2
Water Power (including MHK)	2,500	TWh electricity/yr	20	50 MMT H2/yr	7
Geothermal (conventional)	180	TWh electricity/yr	2	4 MMT H2/yr	1
Geothermal (including EGS)	24,800	TWh electricity/yr	230	480 MMT H2/yr	60

Notes: Conversions to quads are on a higher heating basis; EIA fossil fuel heat rate of 9,268 Btu/kWh (for 2017) is used to calculate quads of physical resource for wind, solar, water power, and geothermal (this does not impact hydrogen potential). Sums are rounded. The technical potential of conventional hydropower represents existing hydropower assets, non-powered dams, and new stream-reach development, but does not include marine hydrokinetic power. The technical potential of conventional geothermal represents identified and undiscovered hydrothermal, but not enhanced geothermal systems.

- Enhanced geothermal systems (EGS) increases the resource potential by >100x
- Solar energy offers the highest hydrogen production potential: >5,000 MMT/yr
- Combined renewable hydrogen production potential is over 6,500 MMT/yr

The biomass technical potential relies on the following two data sets:

- Solid biomass from the Billion-Ton Report (2016): non-waste resources in 2040 base-case scenario estimated at ~680 million dry tons
 - Converts to 47 MMT of hydrogen per year
- Gaseous biomass from NREL analysis (Milbrandt et al. 2018; Saur and Milbrandt 2014): gaseous biomass estimated at about 11 million tons of CH₄
 - Converts to 2.8 MMT of hydrogen per year

Biomass Feedstocks

DIS ZUTO

Forestry Resources	Energy Crops
Logging Residues	Switchgrass
Thinnings	Miscanthus
Other Removals	Biomass Sorghum
Whole Trees	Energy Cane
Agricultural Residues	Coppice Wood
Corn Stover	Noncoppice wood
Wheat Straw	
Oats Straw	
Barley Straw	
Sorgham Stubble	

Milbrandt et al. (2018) Wet Waste

Wastewater Sludge

Animal Manure

Food Waste

Fats, Oils, and Greases

Maps of Hydrogen Potential from Biomass

Wind Potential

- Offshore wind technical potential (Musial et al. 2016): 7,203 TWh/yr
- Land-based wind technical potential (reV Model: Maclaurin et al. 2019): 30,564 TWh/yr

⇒ Wind resource technical potential: ~38,000 TWh/yr

 Both offshore and land-based technical potentials are expected to be updated in 2020

Maps Hydrogen Potential from Wind Resources

Hawaii not included in map – represents ~100 TWh/yr (or 2 MMT H_2/yr)

Solar Potential

- Rooftop PV technical potential (Gagnon et al., 2016): 1,432 TWh/yr
- Utility-scale PV technical potential (reV Model: Maclaurin et al. 2019): ~184,000 TWh/yr
- Concentrated solar power (CSP) technical potential (Murphy et al. 2019): 17,000 GW converting to ~76,000 TWh/yr

⇒ Solar resource technical potential: ~261,000 TWh/yr

Map of Hydrogen Potential from Rooftop PV by State

Hydrogen potential normalized by area

Map of Hydrogen Potential from Utility-Scale PV

Map of Hydrogen Potential from CSP

Source: Murphy et al. (2019). "The Potential Role of Concentrating Solar Power within the Context of DOE's 2030 Solar Cost Targets." National Renewable Energy Laboratory

Water Power Potential

- Current (2017) capacity and generation of existing hydropower assets (EIA 2019; Johnson et al. 2019): 79 GW and ~300 TWh/yr
- Non-powered dams (NPD) technical potential (Hadjerioua et al., 2012): 45 TWh/yr
- New stream-reach development (NSD) technical potential (Kao et al., 2014): 347 TWh/yr
- Marine Hydrokinetic (MHK) technical potential (Table 4.N.2, QTR, 2015): relatively new technology that could increase energy production potential, but is relatively uncertain

	Technical Resource (TWh/yr)			
MHK Resource	Total US	Continental US		
Wave Energy	898—1,229	378–472		
Tidal Current Energy	222–334	15—22		
Ocean Current Energy	45—163	45—163		
River Current Energy	120	100		
TOTAL	1,285—1,846	538–757		

Water power resource technical potential:

~690 TWh/yr (excl. MHK) to 2,500 TWh/yr (incl. MHK)

Maps of Hydrogen Production Potential from Hydropower

Geothermal Potential

- Technical potential based on BAU scenario of geothermal resource capacity (Table 4, Augustine et al., 2019)
- Capacity factor of 90% for flash plants, 80% for binary

	Flash	Binary
Hydrothermal	64.2%	35.8%
NF EGS	56.9%	43.1%
Deep EGS	32.9%	67.1%

Geothermal Resources	BAU Scenario Availability (MW _e)	Estimated Power Generation Potential (TWh/yr)	Estimated Hydrogen Production Potential (MMT/yr)
Identified Hydrothermal	5,078	38	0.7
Undiscovered Hydrothermal	18,830	143	2.8
Near Field Enhanced Geothermal System	1,382	10	0.2
Deep Enhanced Geothermal System	3,375,275	24,628	480.1
TOTAL	3,400,565	24,819	483.8

Hydrogen production potential from geothermal is ~3.5 (excluding EGS) to >480 MMT/yr

Geothermal Maps

Map not included in report

Combined Renewable Technical Potential Map

Map includes only the renewable resources for which county-level data was available:

- Biomass
- Wind
- Solar (CSP and UPV)
- Hydro (EHA)

DOES NOT INCLUDE:

- Solid biomass for AK or HI
- Offshore wind for HI
- Rooftop PV
- Non-powered dams, new streamreach development, or marine hydrokinetics
- Geothermal

Map shows **5,900 MMT** (90%) of hydrogen production potential, out of an estimated total technical potential from renewable resources of ~**6,500 MMT**

Revision of Map of Dominant Renewable Resource Potential

Comparison Across Energy Resources

(percent increase in projected resource consumption)

Note: The demand for wind, solar, hydropower, and geothermal resources to produce 10 MMT of hydrogen is 513 TWh, which is converted to quads using the EIA fossil fuel heat rate of 8,017 Btu/kWhe in 2040, to enable comparison with the EIA projected resource consumption estimates. As a result, the energy requirements for the low-temperature electrolysis pathways appear higher than coal and biomass gasification, despite having a higher conversion efficiency.

Contextualized with Projected Electricity Generation

- For electricity LTE, 513 TWh will be required to meet demand of 10 MMT H₂ in 2040
- Total projected net electricity generation: 4,936 TWh

Demand for 10 MMT of electrolytic hydrogen would result in a **10% increase** in electricity generation in 2040

 Projected renewable electricity generation: 1,356 TWh

> Producing 10 MMT of electrolytic hydrogen from renewables would increase projected renewable power generation by 38%

Water Consumption by Technology

Based on ANL's GREET model and EERE Program Record (#17005) on water consumption associated with hydrogen production for each pathway

Direct (Process) Water Consumption

Water Consumption by Technology (cont.)

* Note: upstream water consumption does not include evaporative losses, which can be significant for hydropower

- Comparison of water consumption requirement to produce 10 MMT hydrogen: approximately 29 billion gallons (if produced exclusively from wind or hydropower) to 645 billion gallons (if produced exclusively from geothermal) [based on average water consumption factors from the GREET model]
- Freshwater withdrawals in the US in 2015 was over 100 trillion gallons (Dieter et al. 2018) -> water requirement to produce 10 MMT of hydrogen would range from <0.03% to 0.6% of the US freshwater withdrawals [not considering displacement]

Future Work

- Upcoming H2@Scale analysis report will address economic potential of hydrogen production from domestic energy resources
- Resource potential estimates can be incorporated into the Scenario Evaluation and Regionalization Analysis (SERA) model (Bush et al. 2013) for cost-based optimization of hydrogen supply chains considering geospatial resource constraints
- Analysis addressing the geospatial water availability constraints

DOE Offices

Office of Fossil Energy

Office of Nuclear Energy

Bioenergy Technologies Office

Wind Energy Technologies Office

Solar Energy Technologies Office

Water Power Technologies Office

Geothermal Technologies Office

National Laboratories

National Energy Technology Laboratory

Idaho National Laboratory

National Renewable Energy Laboratory

Oak Ridge National Laboratory

Argonne National Laboratory

This work was funded by the U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy

Report will soon be available online: <u>https://www.nrel.gov/research/publications.html</u>

For more information on H2@Scale: <u>www.energy.gov/eere/fuelcells/h2-scale</u>

Backup Slides

Co-Authors

- Michael Penev (NREL) H2A model developer; author on 2013 Report
- Anelia Milbrandt (NREL) Biomass resource expert
- Nick Gilroy & Billy Roberts (NREL) GIS expert, reV modeling of solar
- Marc Melaina (previously NREL) Hydrogen expert, author on 2013 Report
 Reviewers
- Tom O'Connor (NE), Richard Boardman (INL), Jim O'Brien (INL)
- Zia Haq (BETO)
- Christopher Munson and Peter Balash (NETL)
- Chad Hunter (NREL), Mark Ruth (NREL), Tim Brown (First Element), Manussawee Sukunta (U.S. EIA), Michael Scott (U.S. EIA), and Susan Schoenung (Longitude 122 West)

References

- Argonne National Laboratory (2019). The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) Model v 2019. <u>https://greet.es.anl.gov/index.php</u>
- Augustine, Ho, and Blair (2019). "GeoVision Analysis Supporting Task Force Report: Electric Sector Potential to Penetration." National Renewable Energy Laboratory https://www.nrel.gov/docs/fy19osti/71833.pdf
- DOE. (2015). "Quadrennial Technology Review 2015." Chapter TA 4.N: Marine and Hydrokinetic Power. https://www.energy.gov/sites/prod/files/2015/12/f27/QTR2015-4N-Marine-and-Hydrokinetic-Power.pdf
- EIA (2019). "Annual Energy Outlook 2019" https://www.eia.gov/outlooks/archive/aeo19/
- Gagnon et al. (2016). "Rooftop Solar Photovoltaic Technical Potential in the United States: A Detailed Assessment." National Renewable Energy Laboratory https://www.nrel.gov/docs/fy16osti/65298.pdf
- Hadjerioua, Wei, and Kao (2012). "An Assessment of Energy Potential at Non-Powered Dams in the United States." Oakridge National Laboratory https://hydrosource.ornl.gov/sites/default/files/NHAAP_NPD_FY11_Final_Report.pdf
- Han, J. and Elgowainy, A. (2017). "Water Consumption for Light-Duty Vehicles' Transportation Fuels." Program Record 17005. https://www.hydrogen.energy.gov/pdfs/17005_water_consumption_ldv_fuels.pdf
- Johnson et al. (2019). "Existing Hydropower Assets." HydroSource. Oak Ridge National Laboratory, Oak Ridge, TN. <u>https://hydrosource.ornl.gov/market-info-and-data/existing-hydropower-assets</u>
- Kao et al. (2014). "New Stream-reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States." Oakridge National Laboratory https://hydrosource.ornl.gov/sites/default/files/ORNL_NSD_FY14_Final_Report.pdf
- Lee et al. (2017) "Regional water consumption for hydro and thermal electricity generation in the United States." Applied Energy <u>http://dx.doi.org/10.1016/j.apenergy.2017.05.025</u>
- Lopez et al. (2012). "U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis." National Renewable Energy Laboratory https://www.nrel.gov/docs/fy12osti/51946.pdf
- Maclaurin et al. (2019). "The Renewable Energy Potential (reV) Model: A Geospatial Platform for Technical Potential and Supply Curve Modeling". National Renewable Energy Laboratory https://www.nrel.gov/docs/fy19osti/73067.pdf
- Milbrandt, A., Seiple, T., Heimiller, D., Skaggs, R., Coleman, A., 2018. Wet waste-to-energy resources in the United States. *Resources, Conservation and Recycling* 137, 32–47. https://www.sciencedirect.com/science/article/pii/S0921344918301988
- Murphy, Sun, col, Maclaurin, Turchi, Mehos (2019). "The Potential Role of Concentrating Solar Power within the Context of DOE's 2030 Solar Cost Targets." National Renewable Energy Laboratory https://www.nrel.gov/docs/fy19osti/71912.pdf
- Musial, Heimiller, Beiter, Scott, and Draxl (2016). "2016 Offshore Wind Energy Resource Assessment for the United States." National Renewable Energy Laboratory <u>https://www.nrel.gov/docs/fy16osti/66599.pdf</u>
- National Energy Technology Laboratory (NETL). (2010). Assessment of Hydrogen Production with CO₂ Capture Volume 1: Baseline State-of-the-Art Plants. DOE/NETL-2010/1434. http://www.canadiancleanpowercoalition.com/pdf/SMR9%20-%20H2_Prod_Vol1_2010.pdf
- Saur, G. and Milbrandt, A. "Renewable Hydrogen Potential from Biogas in the United States". NREL. July 2014. NREL/TP-5400-60283. https://www.nrel.gov/docs/fy14osti/60283.pdf
- US DOE (2015). "Quadrennial Technology Review 2015." Chapter TA 4.N: Marine and Hydrokinetic Power. <u>https://www.energy.gov/sites/prod/files/2015/12/f27/QTR2015-4N-Marine-and-Hydrokinetic-Power.pdf</u>

Conversion Assumptions

Metric	Value	Units	Source
Coal (Bituminous)			
Required coal	8.6	kg coal/kg hydrogen	NETL (2010) Case 2.2
Coal energy content	22.6	MMBtu/ton (HHV)	GREET (2018)
Natural Gas			
Required natural gas	156,000	Btu natural gas/kg hydrogen	H2A Future Case Study
Gas Btu content	1,036	Btu per scf (HHV)	March 2020 Monthly Energy Review (EIA 2020b)
Solid Biomass			
Required biomass	13.0	kg biomass/kg hydrogen	H2A Future Case Study
Biomass energy content	18.6	MJ/kg biomass (LHV)	H2A Conversion Factor, (Biomass MYPP Feedstock)
	19.7	MJ/kg biomass (HHV)	Lopez et al. (2012)
Biomethane			
Required biomethane	3.29	kg biomethane/kg hydrogen	Saur and Milbrandt (2014)
Biomethane energy content	50.0	MJ/kg biomethane (LHV)	Saur and Milbrandt (2014)
	56.4	MJ/kg biomethane (HHV)	Lopez et al. (2012)
Wind, Solar, Hydro, and Geothermal Power			
System electricity requirement	51.3	kWh/kg hydrogen	H2A Future Case Study
Nuclear Power			
High temperature electrolysis	50.2%	Thermal conversion	O'Brien (2017)
Uranium use	4.62*10 ⁻⁵	kg uranium per kg hydrogen	O'Brien (2017)

Changes in Uranium Technical Potential

Independent Statistics & Analysis U.S. Energy Information Administration

2015 Domestic Uranium Production Report

May 2016

The uranium reserve estimates presented here cannot be compared with the much larger historical data set of uranium reserves published in the July 2010 report <u>U.S. Uranium Reserves Estimates</u>. Those reserve estimates were made by EIA based on data collected by EIA and data developed by the National Uranium Resource Evaluation (NURE) program, operated out of Grand Junction, Colorado, by DOE and predecessor organizations. The EIA data covered approximately 200 uranium properties with reserve estimates, collected from 1984 through 2002. The NURE data covered approximately 800 uranium properties with reserve estimates, developed from 1974 through 1983. Although the data collected by the Form EIA-851A survey covers a much smaller set of properties than the earlier EIA data and NURE data, EIA believes that within its scope the EIA-851A data provides more reliable estimates of the uranium recoverable at the specified forward cost than estimates derived from 1974 through 2002. In particular, this is because the NURE data has not been comprehensively updated in many years and is no longer a current data source.

Average Fossil Fuel Heat Rates for Electricity Generation

Release date: January 29, 2019

The fossil fuel heat rate is used as the thermal conversion factor for electricity generation from noncombustible renewable energy (hydro, geothermal, solar thermal, solar photovoltaic, and wind) to estimate the amount of fossil fuels replaced by these renewable sources. EIA uses this data to report the primary energy content of generation from noncombustible renewable energy. EIA does not collect data on the heat or energy input into noncombustible renewable generators because this information is not something that plant operators would typically know, and it has little use in electric power markets.

The displaced fossil fuel energy for each unit (e.g., kilowatthours) of electricity generated from noncombustible renewables varies over time and across cases within the AEO as the composition, operation, and efficiency of the fossil generation fleet changes over time in response to market and policy conditions. The primary energy content of renewables generation reported in EIA's *Annual Energy Outlook 2019* uses the average fossil fuel heat rates contained in the file on the right.

Reporting conventions for the primary energy content of renewables generation vary across sources, and different approaches may serve different analytic, policy, or statistical needs. Users who need renewable primary energy in terms of final energy consumed should multiply the annual generation (in kWh) for the wind, solar, hydro, or geothermal resource of interest by 3,412 Btu/kWh to obtain an estimate of primary energy consumption for renewables.