

ZECT I Overview

Timeline

- Project Award: 8/12
- Contractor Kickoff: 11/12
- Project Completion: 3/31/20

Contractors & Projects

- TransPower Battery Electric and Series Hybrid Drayage Trucks
- US Hybrid Battery Electric and Parallel Hybrid Drayage Trucks
- NREL Data Acquisition and Analysis

Acknowledgements

- UC Riverside
- Fleet Operators: TTSI, Cal Cartage, Three Rivers Trucking, NRS, SA Recycling, Knight Transportation Services, Pasha Stevedoring and Terminals, BAE Systems, and Terminalift

Barriers & Challenges

- Evaluate Performance and Reliability
- Promote Market Acceptance
- Data Collection and Analysis

Budget

• DOE: \$4,169,000

Cost Share: \$5,205,641

Total Cost: \$9,374,641

• DOE Expended: \$3,945,212*

*All funds to be expended

Relevance: Goals & Objectives

Project Objectives:

- Develop and Demonstrate four Zero-Emission (ZE) capable Class 8 dravagė trucks
- Two BET and Two PHET platforms with all-electric-range (AER)
- Complete demonstration with Fleet Operators
- Complete data collection and analysis

Results:

- All four vehicle platforms completed
- All four platforms demonstrated AER capability
- Data collection and Final reports and analyses completed for all projects

Impact:

- Technology advancement and demonstration, and accelerated deployment of zero-emission transportation in drayage operations in California
- Increased interest by consumers to choose ZE transportation for goods movement

Source: South Coast Air Quality Management District, "Goods Movement", 2016 AQMP White Paper, October 2015.

Buses

Other

Technical Objectives

	ВЕ	T	PHET			
Developer	TransPower	US Hybrid	TransPower	US Hybrid		
No. of Trucks	4	2	2 - Series Hybrid	3 - Parallel Hybrid		
Chassis	International Prostar	International Prostar	International Prostar	Peterbilt 384		
Traction	Dual IPM Motors	Induction Motor	Dual IPM Motors	IPM Motor		
Motor	300 kW	320 kW	300 kW	222 kW (402 kW total)		
Transmission	Automated Manual	Direct Drive	Automated Manual	Automatic		
APU Displ./Fuel	N/A	N/A	3.7L / CNG	8.9L / LNG		
APU Power	N/A	N/A	65-110 kW	180 kW		
Battery/Fuel Storage	215 215 144/5	180 - 240 kWh	138 kWh	80 kWh		
Capacity	215 – 315 kWh	180 - 240 KWN	60 DGE	72 DGE		
Charger On-Board	70 kW	60 kW	70 kW	20 kW		
Recharge/Refuel Time	2.5-4 hrs	3-4 hrs	2 hrs	3-4 hrs		
	2.5-4 1115	5-41115	10-15 min	10-15 min		
Dravago Pango (milos)	75-100 (@215 kWh)	70-100	250+	250+		
Drayage Range (miles)	110-150 (@ 315 kWh)	70-100	35-50 AER	30 AER		

Technical Progress: TransPower BETs

Accomplishments

- 4 EDD trucks built; two year demonstration completed by Q3 2017
- 3 additional EDDs added under separate funding during ZECT 1 project
- Two years of demonstration with multiple fleets
- Testing with UCR for performance and emissions

Performance Metrics

- Matched performance of baseline diesel power, torque, loads
- Energy Efficiency: 2.1 kWh/mi (avg.) ~ 18 mpDGE*
- Range: 60-65 miles fully loaded / 215 kWh storage
- 1.5 kWh/mi unloaded
- 37,000/43,000 amassed miles 4/7 trucks, respectively

Main Challenges

- Battery quality three different suppliers; systems troubleshooting
- Reduced payload capacity for some drayage operators
- Driver availability, incentives, security to operate trucks

EDD-2 undergoing testing on UC Riverside chassis dynamometer.

Test result summary of transient and steady state tests, UCR 2015

Avg. Speed	Duration	Distance	Avg. Power	Net Energy	Total Energy Used	SOC usage
Mph	Sec	mi/cycle	kW	kWh	kWh/mi	%
6.61	3051	5.6	12.7	13.85	2.06	5.23
9.53	3367	8.9	21.8	23.85	2.09	9.19
23.39	4231	28.1	45.8	65	2.1	27.52
19.13	1061	5.6	53.8	17.35	2.42	6.28
34.39	507	4.9	200.5	32.91	7.01	16.55
50.17	1461	20.4	102.8	41	1.96	23.34
	Mph 6.61 9.53 23.39 19.13 34.39	Mph Sec 6.61 3051 9.53 3367 23.39 4231 19.13 1061 34.39 507	Mph Sec mi/cycle 6.61 3051 5.6 9.53 3367 8.9 23.39 4231 28.1 19.13 1061 5.6 34.39 507 4.9	Mph Sec mi/cycle kW 6.61 3051 5.6 12.7 9.53 3367 8.9 21.8 23.39 4231 28.1 45.8 19.13 1061 5.6 53.8 34.39 507 4.9 200.5	Speed Duration Distance Power Energy Mph Sec mi/cycle kW kWh 6.61 3051 5.6 12.7 13.85 9.53 3367 8.9 21.8 23.85 23.39 4231 28.1 45.8 65 19.13 1061 5.6 53.8 17.35 34.39 507 4.9 200.5 32.91	Avg. Speed Duration Distance Avg. Power Net Energy Used Energy Used Mph Sec mi/cycle kW kWh kWh/mi 6.61 3051 5.6 12.7 13.85 2.06 9.53 3367 8.9 21.8 23.85 2.09 23.39 4231 28.1 45.8 65 2.1 19.13 1061 5.6 53.8 17.35 2.42 34.39 507 4.9 200.5 32.91 7.01

tests performed with an equivalent gross vehicle weight of 72,000-lb, or average fully loaded weight of drayage truck at San Pedro Bay Ports

^{*} Conversion Factor - kWh/mi / mpg (DGE) 37.656

Technical Progress: TransPower BETs

6

Lessons Learned

- TransPower: "trucks need to have absolute minimum of 100 miles of operating range to gain even niche market acceptance, and 150-200 miles of range to gain broader acceptance."
- Battery Supplier's support and stability are critical

Next Steps

- TransPower improved electric drive system, added Nissan NMC battery modules on Peterbilt Class 8 tractor
- 308 kWh battery storage achieved 131 miles fully loaded @60mph at PACCAR test track
- EDD 1, 3, and 4 upgraded with fuel cell range extenders and NMC batteries under a separate project; in service at TTSI

EDD 2 with loaded trailer

EDD 3

EDD 4 with loaded trailer

QM 7

TransPower BET (EDD) Build

South Coas AQME

8

Technical Progress: US Hybrid – Parallel PHETs

Accomplishments

- · Developed and demonstrated integration of ICE and Electric motor
- Powertrain comparable to larger ICE power and torque
- 80 kWh battery allows 30 miles all Electric
- Seamless transition from all Electric to Hybrid
- Favorable reviews from drivers
- UCR testing completed

Performance Metrics

- Power / Torque : 580 h.p. / 1250 lb.-ft.
- Energy Efficiency: 3.82 kWh/mi ~ *9.8 mpDGE (NREL)
- Fuel Economy: CO₂ compared to ISLG (UCR)
- NOx emissions 64% lower (UCR)
- AER: 30 mile (80 kWh to 10%SOC)

Both US Hybrid PHETs at TTSI

■ Conventional Light CO2 g/bhp-hr ■ Hybrid Light CO2 mg/bhp-hr

■ Hybrid Heavy CO2 g/bhp-hr

Technical Progress: Sus Hybrid US Hybrid — Parallel PHETs

Main Challenges

- Full AER potential not demonstrated in drayage use
- Limited EVSE infrastructure and EVSE demand >> supply
- Energy systems designed to maintain 50% SOC; drivers not required to plug-in

Lessons Learned

- Increased confidence in working with controller hardware for engine and hybrid systems
- Feasibility of upfitting existing ICE trucks with hybrid system

- USH developing three Parallel Hybrid vehicles under DOE grant
- NZE CNG engine and geo-fencing features to operate zero-emission in sensitive areas
- PHETs (ZECT 1) to continue use at TTSI

ISLG - Auto Clutch - Motors - Transmission

US Hybrid PHET with load

US Hybrid PHET - Power/Torque

Technical Progress: US Hybrid - BETs

11

Accomplishments

- 2 BETs completed; demonstration continued through end of project
- 2nd truck outperformed 1st truck: 180 kWh vs 280 kWh storage capacity
- Met most objectives

Performance Metrics

- Sufficient Power and Torque
- Energy Efficiency: 2.17 kWh/mi (NREL) ~ 17 mpDGE*;
 2.5 kWh@65,000-lbs, 0% grade (USH)
- Range: 100 miles @65,000-lbs GCWR
- Maximum speed: 60 mph @65,000-lbs; 65 mph unloaded
- Gradeability: 28 mph@6% grade @65,000-lbs; max 20%

		Loc	cal	Freeway		
Description	Unit	with Trailer	w/o Trailer	with Trailer	w/o Trailer	
Average Power	kW	70	28	104	50	
Energy Efficiency	kWh/mi	4.2	1.6	3	1.3	

BET Energy Efficiency Performance – US Hybrid Final Report

US Hybrid eTruck™ #1 layout with EnerDel battery pack 180kWh (11 packs)

US Hybrid eTruck™ #2 layout with A123 battery pack 280kWh (6 Packs)

^{*} Conversion Factor - kWh/mi / mpg (DGE) 37.656

South Coast AQMD

12

Technical Progress: US Hybrid - BETs

Main Challenges

- Energy storage: Initial Batteries lacked sufficient range, power, life
- Battery suppliers: technical performance and charge profiling
- Thermal management
- Driver availability, incentive-to-operate trucks

Lessons Learned

- Higher energy density and battery quality
- Increased confidence in working with controller hardware for engine and hybrid systems
- Upgrade of traction drive to maintain power delivery at lower Voltage
- Loss of payload due to added weight of batteries needed to increase range

Next Steps

- US Hybrid will pursue customers to continue use
- Drayage customers looking towards zero-emission transport

US Hybrid eTruck No. 2 at South Coast AQMD January 10, 2020

US Hybrid eTruck with loaded trailer

US Hybrid BET - Power/Torque

Technical Progress: TransPower – Series PHETs

14

60-120 GGE CNG Storage

100 kWh Batteries

- Accomplishments
 - 2 Series PHETs completed; demonstration continued through end of project
 - 2nd truck outperformed 1st truck
 - Near-dock operations demonstrated
- Performance Metrics
 - Energy Efficiency: 2.12 4.85 kWh/mile (UCR)
 - Genset significantly reduced battery use
 - High NOx and PM emissions
 - Miles accrued: limited by technical issues and usability

NOx emissions on g/bhp-hr basis for each test run (UCR)

Technical Progress: TransPower – Series PHETs

Main Challenges

- APU: engine controller information was not available = limited power and high emissions
- Thermal management of small, rear-mounted APU

Lessons Learned

- Series hybrid concept demonstrated technically
- Small APU: technically feasible to significantly supply power, reduce and prolong batteries
- Access to engine controller is critical and likely reduce emissions
- Minimum APU power needed is 110 kW as originally proposed
- Rear-mounted APU has airflow limitations that impact genset to cool and limits optimum performance

Next Steps

This platform is not currently expected to continue usage with drayage fleet operators

TransPower PHET No. 2

TransPower PHET No. 2 w/ Trailer

TransPower PHET No. 2 rear view showing APU

TransPower PHET UCR Data

16

Integrated Power Results for all cycles.

				•			
					Average	Average	
			!	Average Total	Generator	Battery	
Cycle	Ave Speed	Duration	Distance	Power	Power	Power	SOC usage
n/a	mi/hr	sec	mi/cycle	kW	kW	kW	%
SG1 Hill	40.79	448	5.07	184.39	35.12	149.27	11
UDDS	18.39	1061	5.42	50.95	41.89	9.06	2
UDDS	18.48	1061	5.45	50.80	43.54	7.25	1
DTP 3	23.98	4229	26.65	48.11	42.74	5.38	5
UDDS (No APU)	18.31	1061	5.40	58.15	0.00	58.15	10
SG1 (No APU)	33.15	427	3.93	160.16	0.00	160.16	12
UDDS	18.46	1061	5.44	52.55	40.27	12.29	2
UDDS	18.59	1061	5.48	49.71	41.03	8.68	2

TransPower PHET No. 2 at UCR's heavy duty chassis AC transient dynamometer

Energy Results Summary for all cycles

				-	Net	Net		Generator	Battery	
					Generator	Battery	Total Energy	energy	Energy	
Cycle	Ave Speed	Duration	Distance	Net Total Energy	Energy	Energy	usage	usage	usage	SOC usage
n/a	mi/hr	sec	mi/cycle	kWhr	kWhr	kWhr	kWhr/mi	kWhr/mi	kWhr/mi	%
SG1 Hill	40.79	448	5.07	22.95	4.37	18.58	4.53	0.86	3.66	11
UDDS	18.39	1061	5.42	15.02	12.34	2.67	2.77	2.28	0.49	2
UDDS	18.48	1061	5.45	14.97	12.83	2.14	2.75	2.36	0.39	1
DTP 3	23.98	4229	26.65	56.52	50.20	6.32	2.12	1.88	0.24	5
UDDS (No APU)	18.31	1061	5.40	17.15	0.00	17.15	3.18	0.00	3.18	10
SG1 (No APU)	33.15	427	3.93	19.04	0.00	19.04	4.85	0.00	4.85	12
UDDS	18.46	1061	5.44	15.49	11.87	3.62	2.85	2.18	0.67	2
UDDS	18.59	1061	5.48	14.65	12.09	2.56	2.67	2.21	0.47	2

Remaining Challenges and Barriers

Performance and Reliability

- Range of Battery-Electric trucks
- OEMs investing in R&D to develop commercially acceptable BETs

Market Acceptance

- BETs and PHETs still finding their place in fast changing technology and regulatory environment
- Total Cost of Ownership: CapEx, OpEx, infrastructure(s)

Costs: batteries and drive systems and infrastructure

- Costs/kWh of batteries expected to continue to fall with expanding market and technology development
- Improvements in drive systems and overall efficiencies/energy management
- Real costs of EVSE Infrastructure coming more into view with OEM commercial vehicle roll-out projections

ZECT I

Summary

South Coast AQMD

18

Pros

- All four ZECT 1 platforms completed and demonstrated with drayage operators in the South Coast AQMD
- All platforms demonstrated sufficient power, torque, gradeability to transport most payloads
- "Hands-on" operation drivers recognize differences and benefits of electric power: quiet, clean, power, torque
- ZECT 1 efforts increased knowledge of battery-electric technologies and management systems
- ZECT 1 efforts increased knowledge of plug-in hybrid systems from two different perspectives
- Both Hybrid platforms improved the concepts of series and parallel technologies for Class 8 trucks
 - · Proof of concept for small APUs in series hybrid
 - Parallel hybrid performance comparable to larger displacement ICEs
- ZECT 1 concepts have established a new foundation for improved technologies:
 - TransPower BETs upfitted with fuel cell range extenders
 - US Hybrid developing a NZE CNG PHET with L9N and geofencing under DOE/SCAQMD grant
 - TransPower now with Meritor and Peterbilt developing Class 8 battery-electric platforms
 - · Both integrators expanding into Fuel Cell heavy-duty platforms
- Drayage operators expecting customer demand for zero-emission transport

Cons

- BETs need to improve range, minimize weight and loss of payload capacity, address costs, and TCO
- Projects need a broader demonstration increase infrastructure costs, but improve technology exposure and vehicle usage
- Range anxiety: drivers expecting > 100 mile range as standard
- Range anxiety contributed to limited demonstration
- Battery Supplier's stability and support is significant

