

SMR Pressure Vessel Manufacturing and Fabrication

D. Gandy Sr. Technical Executive, <u>Davgandy@epri.com</u> M. Albert, Sr. Technical Leader, <u>MAlbert@epri.com</u>

DOE AMM Technical Review Webinar

December 18, 2019

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

Outline

- Background & Objectives
- Development/Demonstration of 4 Advanced Manufacturing/ Fabrication Technologies
- 2/3-Scale SMR Manufacturing/Fabrication Phase 1
- Component Dimensioning
- Electron Beam Welding
- Applicability to Advanced Reactors -- Summary

Vessel Manufacture and Fabrication

- What if it only took 12 months to produce a reactor pressure vessel?
- What if you could perform an entire SMR RPV girth weld in <60 minutes?</p>
- What if you could manufacture an entire SMR head in < 3 months with no vessel dissimilar metal welds?
- What if you could eliminate the need for in-service examinations of girth welds?
- What if you could perform vertical welds to join rolled plates without subsequent embrittlement concerns?

Representative Model of NuScale Power Reactor Vessel

Enabling the Next Generation of Nuclear Plants -Scope

- Manufacture Major Critical Components to Assemble a <u>2/3-Scale</u> SMR Reactor Pressure Vessel
- Jointly Funded Collaboration
 - EPRI, Nuclear AMRC, DOE, NuScale Power
- Others
 - Synertech-PM, Sheffield Forgemasters, Sperko Engineering, Carpenter, ORNL, etc.

Photograph provided courtesy: NuScale Power

DOE Project: DE-NE0008629

What Once Took Weeks, We Can Now Do In Hours...

Advanced Manufacturing -Objectives

w.epri.com

- Rapidly Accelerate the Deployment of SMRs
- Develop/Demonstrate New Methods for Manufacture/ Fabrication of a Reactor Pressure Vessel (RPV) in <u><12 months</u>
- <u>Eliminate 40%</u> from the cost of an SMR RPV, while <u>reducing</u> the Schedule by <u>18 Months</u>

200mm Electron Beam Weld

Electron Beam (EB) Welding

Why EBW?

- One-pass welding!
- No filler metal required.
- EBW can produce welds w/ minimal HAZ
- Nuclear-AMRC, TWI, Rolls-Royce & EPRI have demonstrated in-chamber and/or local vacuum on thick section alloys
 - Enables field/shop welding!
- RPV girth welds (110mm thick) in <60 min</p>

Inspection, Costs?

- Huge savings in welding costs (again, one pass welding)
- Potential to eliminate in-service inspection!

65mm (thick) x 3m length x 1.8m diameter Welding time: <10 minutes

Photograph provided courtesy: TWI (UK)

Photograph provided courtesy: Nuclear AMRC (UK)

Powder Metallurgy-Hot Isostatic Pressing (PM-HIP)

Why PM-HIP?

- Near-net shape and complex components (reduces materials cost and machining)
- Alternate supply route, shorter turn-around
- Considerable EPRI/Industry development over last 7 years.
- Ideal for multiple penetration applications (RPV or CNV head) vs expensive forgings

Inspection, Costs?

- Homogeneous-Excellent inspection characteristics
- Costs roughly equivalent to forging
- Eliminates need for welds in some applications.

Large 316L SS Valve Body

3700 lb BWR nozzle

Steam Separator Inlet Swirler

Partial RPV Ring Section

2/3rds Scale Small Modular Reactor Manufacture/Fabrication

• EPRI

- Nuclear-AMRC
- US DOE
- NuScale Power

Lower Head – One-Half Section

Lower Head—Article 1

HIP Modeling—Shows Lower Head inside of the Finished Capsule

Final part: ~6500lbs (2950 kg) @ 2/3rds scale; Full Scale is ~11,000lbs (1/2 section) (4990kg)

Lower Halves- Capsule Completed

Custom Frame Built for the One-Half Lower Head Section

www.epri.com

- Non-symmetrical component in one-half section.
- Custom rack required due to size of existing HIP furnaces in USA.
- 1.67m (66 inches) diameter in USA; 2m (78.5 inches) in Japan
- Must be stood upright in custom frame

One-Half Lower Head HIP'ed & Dimensioned

6910 lbs (3134kgs)

Lower Head Manufacture/Assembly

- Three one-half section (at 2/3rds scale) reactor heads modeled and manufactured
- 1st Article Produced to gain understanding of movement of asymmetrical ½-head section during HIP
 - Modeling and canning modified based on learning from 1st Article
- 2nd and 3rd Articles produced following analysis of 1st article

Note: Synertech-PM performed all modeling and dimensioning. HIP was performed at Bodycote Portland.

Remember....

- In general, HIP is used to produce "asymmetric parts"
- 2. EPRI/Synertech are pushing the envelope <u>well beyond</u> the previous experience with HIP for very large section components

www.epri.com

2nd Article—1/2 Section Head

2nd Article—1/2 Section Head

www.epri.com

Blue region is slightly under dimension by ~0.125-inch

0.2500 0.2250 0.2000 0.1750 0.1500 0.1250 0.1000 0.0750 0.0500 0.0250 0.0000 0.0250 0.0500 -0.0750 -0.1000 -0.1250 -0.1500 -0.1750 -0.2000 -0.2250 -0.2500

Blue region is under dimension by ~0.120-inch

Blue region is slightly under dimension by ~0.025-inch

0.2250

0.2000

0.1750

0.1500

0.1250

0.1000

0.0250

0.0000

-0.0250

-0.0500

-0.0750

-0.1000 -0.1250

-0.1500

-0.1750

-0.2000

-0.2250

-0.2500

Article 2—Another View

Blue – Design Dimension

Red – Design Component plus 1/2-inch

Black – Final Component with Capsule (after HIP)

Article 3—Lower Head

3rd Article—1/2 Section Head

Article 3—Lower Head

Blue region is under dimension by ~0.200-inch. Note: This area is confined solely to the backing bar region.

Blue region is under dimension by ~0.200-inch. Note: This area is confined solely to the backing bar region.

Blue region is slightly out of dimension

25

www.epri.com

Small Modular Reactor Upper Head

- ~44% scale
- A508 Class 1, Grade 3
- 27 penetrations
- 1650kg (3650lbs); 1270mm (50 inches) diameter
- Next, 2/3-scale head
- Need larger HIP Vessel -- ATLAS

DOE Project: DE-NE0008629

Photographs courtesy of EPRI and NuScale Power

EB Welding Development

Nuclear AMRC capabilities Pro-beam K2000

	Pro-beam K2000
Chamber size	8.7 x 5.2 x 4.6 m ³
Chamber volume	208 m ³
Max Work piece size	6.4 x 4.0 x 3.2 m ³ at 100 tonne
Acceleration voltage	60 or 80 kV
Max beam power	30 or 40 kW
Wire feeder	2 off
Pump down time	45 min

pro beam

Lower Flange Shell Mockup EB Weld -- ~6 ft (1.82m) diameter (Note, mockup is upside down)

Completed in 47 minutes

Lower head to Lower Flange Shell (again, upside down)

30

Cleaning of A508 Powders (via Vacuum Annealing) Places the Powder in a "Pristine Condition" for Consolidation

6" x 6" x 6" Test Blocks

113ft-lbs = 153 joules

84ft-lbs = 114 joules

Project Status (thru November 2019)

- Steam plenum access port <u>completed</u> (EPRI ANT program)
- 44% diameter (50-inch) A508 top head <u>completed</u> (EPRI ANT program)
- Forgings for flanges, PZR shell, lower RPV section <u>completed</u>.
- Three-half section A508 lower head, <u>completed and dimensioned</u>.
- 1st Article for transition shell <u>completed</u>; two more Articles by January 2020.
- EBW & DLC development @ Nuclear AMRC 80% completed.
- Heat treatment development to be completed Q1-2020.
- EB Mockup assembly of lower flange-to-shell <u>completed</u>.
- EB Mockup joining lower head <u>completed</u>.
- Frame for joining transition sections assembled.
- Vacuum annealing of powders development <u>completed</u>.
- Annual report completed.

SMR Vessel Manufacture & Fabrication

- Focus on properties of large section components
- Join 2/3rd scale lower RPV shell-to-flange.
- Complete another lower half head.
- Join 2/3rd scale lower halves, then weld to shell-to-flange assembly.
- Demonstrate QHT via mockup and then at 2/3rd scale
- Complete 4 transition shell sections and weld them together.
- Complete lower assembly.
- Initiate upper assembly development.

Summary

- Promise of technology to lower costs and change the way we produce major thick section components.
- Excellent progress on PM-HIP of large components
 - Dimensionally demonstrated
 - Need to now focus on properties for large sections
 - Complete vacuum annealing of powders
- EB and DLC development 80% complete
- Good progress on EBW Joining
 - 47 minutes for mockup of flange-to-shell weld
 - Completed mockup of lower head weld
 - Need to now complete 2/3rd scale welds

Acknowledgements

US Department of Energy

Tansel Selekler, Dirk Cairns-Gallimore, Isabella van Rooyen

Nuclear AMRC

• Will Kyffin, Matt Cusworth, Thomas Dutilleul, James Connell, Stephen Bloomer

Bridger Welding Engineering

Keith Bridger

Synertech-PM

Victor Samarov, Charlie Barre, Alex Bissikalov

Together...Shaping the Future of Electricity

