

Pulsed Thermal Tomography Nondestructive Examination of Additively Manufactured Reactor Materials and Components

Advanced Methods in Manufacturing Annual Webinar

December 17-18, 2019

Alexander Heifetz Argonne National Laboratory

Project Overview

Goal and Objective

 Develop pulsed thermal tomography (PTT) for in-service nondestructive evaluation (NDE) of additively manufactured (AM) metallic components

Participants

Name	Affiliation		
J.G. Sun, Thomas Elmer, Sasan Bakhtiari, Brian Saboriendo, Peter Kozak	Argonne		
Dmitry Shribak	Argonne The UNIVERSITY OF CHICAGO		
Tiffany Liu	Argonne Berkeley		
Xin Zhang, Jafar Saniie	Argonne ILLINOIS INSTITUTE OF TECHNOLOGY		
Bill Cleary	Westinghouse		
Boris Khaykovich	Massachusetts Institute of Technology Nuclear Reactor Laboratory		

• Overview of AM and NDE with PTT

Overview

Integration of AM into nuclear

- Replacement of aging parts
- Reduction of new construction cost
- Rapid prototyping of reactor design (e.g. TCR)
- AM fabrication can introduce random flaws
 - Selective laser melting (SLM) used for AM of IN & SS
 - Typical flaws consist of porosity regions
- Need capability for NDE of AM metals
 - During and post-manufacturing
 - In-service NDE of parts
 - Addressing by PTT

L-R: the original, obsolete impeller; the 3Dprinted prototype; the resulting 3D-printed replacement part [Image: Siemens Slovenia NPP]

Overview of SLM

Porosity can be introduced into AM parts due to

- Incomplete melting of powder particles
- Insufficient overlapping of melt pools
- Powder ejection and splattering because of thermal gradients

NDE Approach

- Operating principle of pulsed thermal tomography (PTT)
 - Apply pulse of thermal energy to material surface with flash lamp
 - Record surface temperature transients T(x,y,t) with IR camera
 - Reconstruct 3-D thermal effusivity from measurements

	X-Ray/Neutron CT	Ultrasonic	Pulsed Thermal Tomography
Non-contact	Yes	No	Yes
Compact	No	Yes	Yes
2-D Imaging	Yes	No	Yes
One-sided	No	Yes	Yes

PTT Effusivity Reconstruction Algorithm

- Reconstruction based on 1-D model of heat transfer $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial z^2}$
 - α is thermal diffusivity $\alpha = k/\rho c$
 - ρ is the density, c is the specific heat, k is the thermal conductivity
- Effusivity is a measure how material exchanges thermal energy with its surroundings $e = (\rho ck)^{1/2}$
- Characteristic relationship between depth and time is $z = (\pi \alpha t)^{1/2}$
- Reconstruction of spatial effusivity from analytic solution for semi-infinite medium

$$\left| e(z) = z \frac{2Q}{\pi \sqrt{\alpha}} \frac{d}{dt} \left(\frac{1}{T(t)} \right) \right|_{t=z^2/\pi\alpha}$$

Example: effusivity reconstruction for a 5mmthick plate

Principle of Internal Defect Detection with PTT

- Temperature "hot spots" can be observed on the material surface above the flaw
- Demonstrate with COMSOL computer simulations
 - Time evolution of heat transfer through metallic plate
 - Appearance of localized
 "hot spot" on the plate front surface

• PTT Imaging of Imprinted Internal Defects

Develop Compact PTT System for In-Situ NDE

- High-end cameras
 - Size ~ 12"x6"x6"
 - 100Hz to KHz frame rate
 - Cooled photon counting detection (20mK NETD sensitivity)

FLIR X8501 SC4000

MIT (3GV) 3"ID vertical irradiation thimbles

Compact cameras

- Size ~ 2"x2"x4"
 - Fits into 3GV port at MIT NRL
- <60Hz frame rate
- Uncooled microbolometer detection (50mK NETD sensitivity)

AM Specimens with Imprinted Defects

 Designed 10mm-thick SS316 and IN718 specimens with hemispherical low-density internal defects

Fabricated by GPI

Imaging of AM Specimens with X8501sc

- Flash lamp pulse
 - Delivers 6400J/2ms
- Imaging camera
 - FLIR X8501sc
 - 3-5µm
 - 20mK NETD sensitivity
 - Operated at 216Hz with 768x520pixels window
 - 8s to scan through 10mm plate

Imaging Small Holes in IN718 with X8501sc

Imaged area d5 d4 d3 d2 d1 φ1 φ2 φ3 φ4 φ5 φ6 φ8 d2 d5 d4 d3

PTT Reconstructions

energy.gov/ne

Imaging Small Holes in SS316 with X8501sc

Imaged area

Plane Slice #15 (1mm depth)

PTT Reconstructions

Plane Slice #22 (2mm depth)

Plane Slice #40 (4mm depth)

- Flash lamp pulse
 - Delivers 6400J/2ms
- Imaging camera
 - FLIR A65

Imaging Large Holes in SS316 with A65

Imaged area

Plane Slice #18 (1mm depth)

PTT Reconstructions

• PTT Imaging of AM Structure

Imaging of AM IN718 Nozzle Plate

- 8in x 8in x 2/3in (17mm) Westinghouse plate,
- Imaging time 21s to scan through

Nozzle Plate 3D Imaging with ImageJ

XY plane

Parallel plane cross-section reconstructions

XZ plane

Accomplishments

Publications/Presentations

- A. Heifetz, J.G. Sun, D. Shribak, T. Liu, T.W. Elmer, P. Kozak, S. Bakhtiari, B. Khaykovich, W. Cleary, "Pulsed thermal tomography nondestructive evaluation of additively manufactured reactor structural materials," *Transactions of the American Nuclear Society*, Vol. 121, 589-591, 2019
 - Presented at the ANS Winter Meeting, Washington, D.C. November 17-21, 2019
- A. Heifetz, "Pulsed Thermal Tomography Nondestructive Evaluation of Additively Manufactured Reactor Structural Materials," invited talk, *Purdue University Nuclear Engineering Weekly Seminar*, April 17, 2019
- A. Heifetz, "Pulsed Thermal Tomography Nondestructive Evaluation of Reactor Structural Materials," presented at *MIT Nuclear Reactor Laboratory Seminar*, December 18, 2018.

Technology Impact

- Advances the state of the art for nuclear application
 - Provides capability to perform NDE of nuclear-grade AM structures
- Supports the DOE-NE research mission
 - Supports integration of additive manufacturing into nuclear energy
- Impacts the nuclear industry
 - Helps to reduce manufacturing and maintenance costs
- Will be commercialized
 - Invention Disclosure at ANL has been filed by A. Heifetz, T.W.
 Elmer, and S. Bakhtiari in October 2019

Conclusion

- Demonstrated detection of calibrated flaws in AM SS316
 and IN718 specimens
 - Porosity regions with 1mm diameter located 1mm below plate surface were detected
- Contact Information
 - <u>aheifetz@anl.gov</u>
 - 630-252-4429

