

Establishing Modular In-Chamber EB Welding (MIC-EBW) Capability in USA

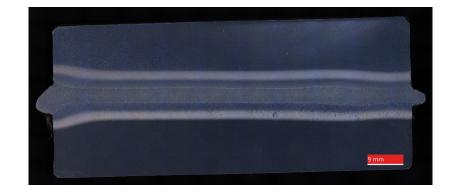
David Gandy Sr. Technical Executive <u>davgandy@epri.com</u>

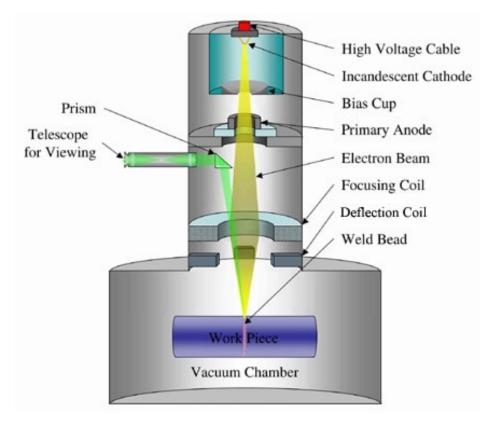
DOE AMM Technical Review Webinar

December 18, 2019

Image: mail of the second s

Outline


- Background
- Why Consider Modular In-Chamber Electron Beam Welding?
- DOE Project Objectives
- Project Tasks
- Project Status
- Summary



Background— Electron Beam Welding

www.epri.com

- EBW is used extensively in aerospace, aircraft, automotive, food, electronics, medical, and defense industries
- Primarily used for thinner materials; limited use for thick sections
- DOE Project DE-NE0008629 with EPRI/NAMRC has established parameters for thick section (110mm) applications in a vacuum chamber.
- Now need to utilize same parameters and similar equipment in MIC-EBW approach.

Example EBW Equipment

Photograph provided courtesy: PTR Precision Technologies

www.epri.com

Photograph provided courtesy: Nuclear AMRC (UK) Chamber is 9 x 4 x 5m

Why Modular In-Chamber Electron Beam Welding?

Three Options Considered

- 1. Build a very long chamber 40+ ft
 - Fixes one's options and requires high pumping capabilities
 - Locks one in for future
- 2. Use **local vacuum** (reduced pressure?)
 - Hasn't quite gotten to where it should be even after many years of R&D
- 3. Modular approach 🕇
 - Many of the welds only require short assemblies
 - Provides options for future/alternative applications
 - Scalable

DOE Project Objectives

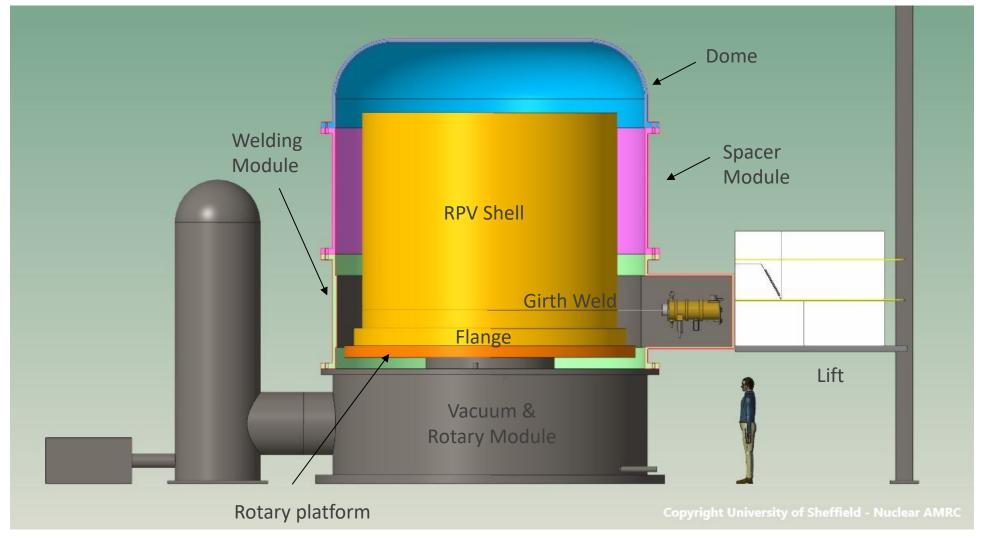
- Develop and establish MIC-EBW capability at a major U.S. fabricator
- Reduce overall welding arc time by up to 90% compared to conventional welding technologies used for vessel production.
- Successfully demonstrate a 10-ft (3.05-m) diameter, 4.375-inch (110-mm) thick vessel EB weld in less than 90 minutes of welding time.
- Establish MIC-EBW capability to perform major RPV girth welds for the NuScale Power RPV.
- Develop manufacturing process plans based on the technology and required postweld inspection/heat treatment.

DOE Project DE-NE0008846

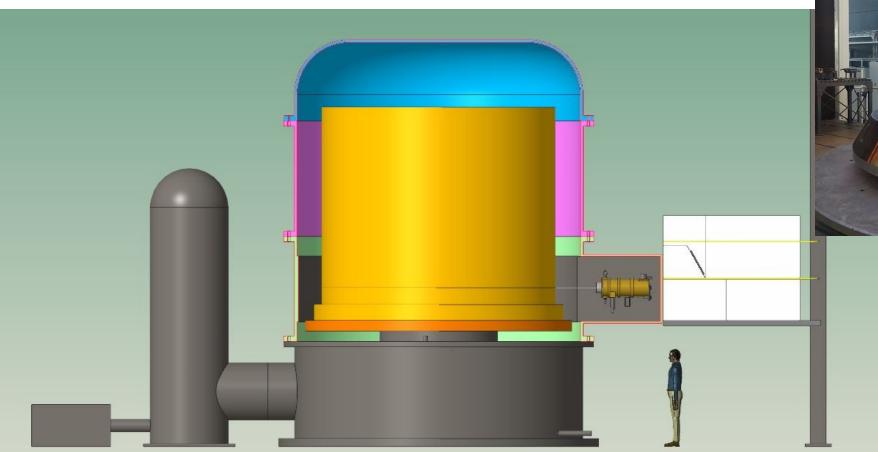
Two-Phase Approach

Phase 1. EBW Equipment Design and Production (12 months) -- funded

- 1. Process Planning—Welding, Inspection, and Manufacturing Stages (Bridger)
- 2. Design/Manufacture of the Pumping Stages of EB System (PTR)
- 3. Design/Manufacture EB Gun Stage/Slide & 4/5ft diameter Demonstration (PTR)
- 4. Design Vacuum Seals for Modular Ring Sections (AMRC)


Phase 2. Full-Scale Modular In-Chamber EB Welding Demonstration (18 months, starting after initial 6 months of Phase 1) – unfunded at present

- 5. Design/Manufacture of the Rotary Manipulation Stage (Rusach)
- 6. Produce Modular Ring Sections and Fabricate Modular Vacuum Sections for SMR Welding/Joining (Fabricator)
- 7. Demonstrate Modular EB Welding Capabilities for Large Scale—10 feet (3.05m) Diameter Shells (Manufacture/PTR)
- 8. Design Lift Stage to Move the EB Power Supply and Control Panel (AMRC)
- 9. Develop/Demonstrate NDE of Final Welds (EPRI NDE)


Modular In-Chamber EBW --RPV Shell and Flange Welding

DOE Project DE-NE0008846

RPV Shell and Flange Shown Inside of Modular EBW Chamber (in gold)

Copyright University of Sheffield - Nuclear AMRC

Lower Flange Shell Mockup EB Weld -- ~6 ft (1.82m) diameter (Note, mockup is upside down)

Completed in 47 minutes

Key Project Team Members

- EPRI Project Management & NDE Development
- NuScale Power Engineering and Project Consulting
- PTR-Precision Technologies EB Equipment Designer, Manufacturer, and Medium/Large Size Mockup Demonstrator
- AMRC Module Design
- Bridger Welding Engineering Process Planning, General Consulting.
- Rusach International Rotary Table Manufacture
- Fabricator Fabricate Individual Ring Sections and Vacuum Modules
- Manufacturer Host & Demonstration

120" x 36" x 50" Vacuum Chamber (courtesy of PTR)

Task 1—Process Planning --Bridger Welding (lead)

- Weld Development Plan: including components to be welded, post-weld heat treatment, post-weld inspection, and post-weld characterization
- Manufacturing Process Plan: including pre-weld manufacturing requirements, pre-weld setup, post-weld machining requirements, post-weld heat treatment requirements/processes, and inspection requirements
- Inspection Plan: including nondestructive evaluation (NDE) methods and beam location
- Cladding Plan: including cladding sequencing for each component

Task 2--Design/Manufacture Vacuum Pumping Stages of EBW System (PTR lead)

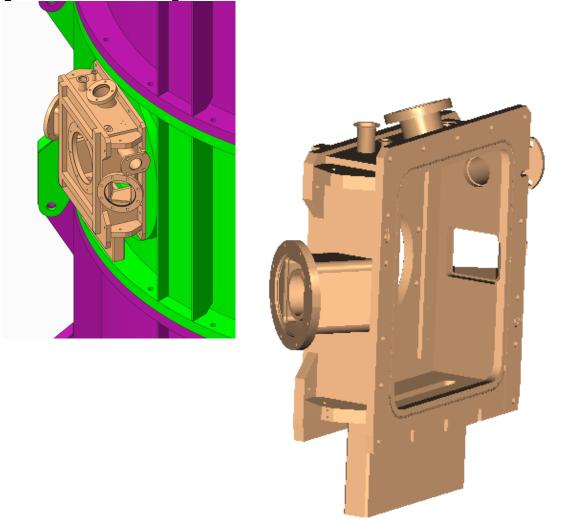
Vacuum Pumping System

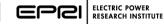
- Pumps and Blowers
- Cryo-pumping System
- Vacuum ductwork
- Chimney
- Diffusion pumps
- Note: Expected pump-down for full height system is 2-3 hours

www.epri.com

Example equipment ordered for vacuum pumping system

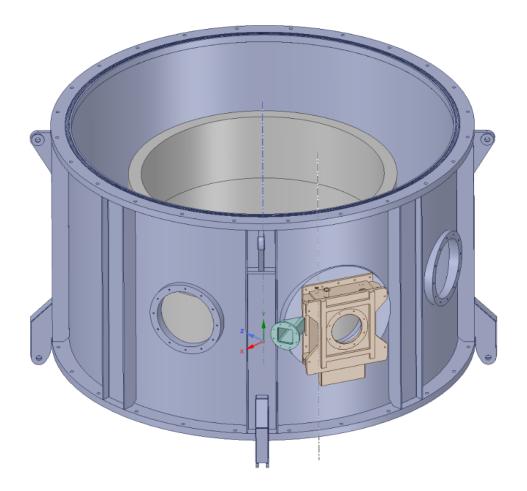
Task 3--Design/Manufacture EB Gun and Slide Module and Perform 4ft Diameter Demonstration (PTR Lead)


- The EBW gun is operated in a fixed horizontal welding position,
 - and the component is rotated on a heavy platform.
- Welding gun will be based on a 150 kV triode gun design
 - Already produced by PTR-Precision Technologies for other applications.
- The EB gun will be attached to a dedicated EBW stage (green)
 - Will be capable of sliding in and out over some defined range (and up and down—Z-direction)
 - Allows the EB gun to accommodate various diameters (again, within a certain range).

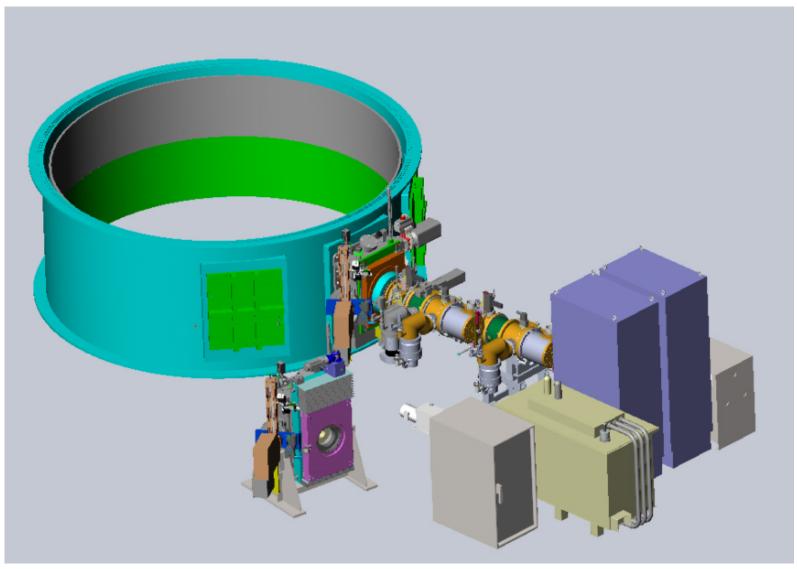


Task 3--Design/Manufacture EB Gun and Slide Module and Perform 4ft Diameter Demonstration (PTR Lead)

- The "EB gun and slide" will be semipermanently attached to the side of the EB gun and slide module.
- The entire "EB gun and slide stage" must be capable of being disconnected from the module/stage below it and moved to accommodate another module.
- Control and power center (transformer, power supply, chiller, and so on) will move up and down with the EB gun and slide stage to minimize the high-voltage cable length and diameter.



Component Parts of EB Module – Outer Shell


- Outer shell 1.5 " thick C-Mn Steel
- Sealing the same as other modules
- Lead shielding on OD if needed
- Only module designed for radiation
- Additional ports added for future options
- Current design is 8ft tall

w.epri.com

All EB System Components

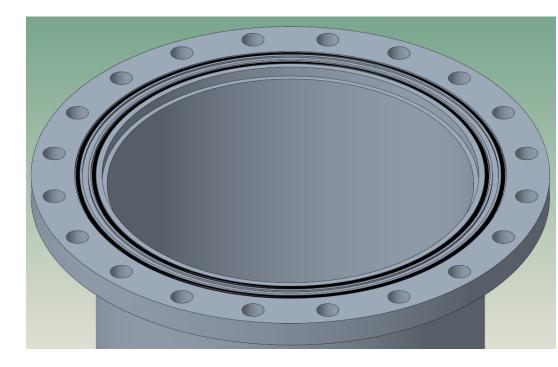


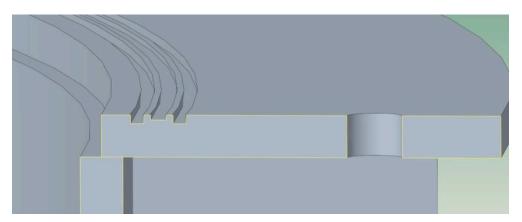
Task 3--Design/Manufacture EB Gun Stage and Slide Module and Perform 4ft Diameter Demonstration (PTR Lead)

- The MIC-EBW gun system will be demonstrated at PTR-Precision Components site:
 - Employs a 4ft (1.1m) diameter rotary table positioned inside a vacuum chamber.
- Demonstration is considered necessary to make sure that all system components (minus the large rotary table and large vacuum chamber) work together
- The demonstration will include welding on thick carbon/alloy steel rings sufficient to demonstrate the MIC-EBW gun and slide capability.

Large diameter steel rings

Task 4--Design Vacuum Seals for Modular Ring Sections (AMRC-UK Lead)


- Precise coupling of modular ring sections is required to eliminate air leakage and to achieve high vacuum (~10⁻⁴ torr) between individual sections.
- MIC-EBW allows various "modular ring sections" of the vacuum chamber to be moved or added to accommodate RPV girth welding at different heights.
- The vacuum seals will be designed for use in each modular ring section under this task



Task 4--Design Vacuum Seals for Modular Ring Sections --AMRC Lead

- Individual "ring sections" will be produced (Task 6) from >1.5 in. (>38.1 mm) thick carbon steel.
- A flange will be attached to both the upper and lower extremities of the ring section via welding to achieve a good junction between two modules.
- A tight fit is achieved at the junction between the two modules through two engineered vacuum seals.
- A sensor will be positioned between the two vacuum seals to allow vacuum tightness to be checked
 - before pump-down
 - and monitoring during pumping to detect any leaks extremely important in EBW activities.

Vacuum seals rings--example

What Does the MIC-EBW System Include?

EB Welding System

- EB Generator & Power Supply
- CNC Controls and Operator Console
- Secondary Viewing System
- EBO Package (for viewing, tracking, and manipulating E-beam)

Vacuum Pumping System

- Pumps and Blowers
- Cryo-pumping System
- Note: Expected pump-down for full height system is 2-3 hours

Courtesy of PTR

Project Deliverables

Phase 1--Equipment (funded)

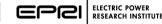
- A process planning report that details all welding, inspection, and manufacturing steps and sequence
- Manufacture of a triode EBW gun and slide
- Manufacture of a vacuum pumping system
- Development of vacuum sealing technology for large EB modules
- Demonstrate EBW capabilities on 4ft (1.1m) diameter rings

Phase 2--Demonstration (unfunded)

- Manufacture of a rotary manipulation stage (>175 ton [350,000 lb] capability)
- Demonstration of large (10 ft [3.05 m] diameter), thick-section component EBW capability
- Development of modular EBW capability in the United States
 - Can be used for multiple diameters—versatility
 - Focus of project is for NuScale Power RPV (eight to nine modules)
- Demonstration that a large-diameter (10 ft [3.05 m]) thick-section weld can be completed in less than 90 minutes
- Development of machining and phased array inspection systems

Progress

 Major equipment for EBW system and vacuum systems ordered and some assembly completed.


- MIC-EBW system design near complete; design review planned in late-January 2020. Includes: all major modules.
- Vacuum seal design finalized; mockup planned to evaluate sensors.
- Determined sequencing of NuScale girth welds and stack up of system requirements.
- Plan to finalize planning for Phase II by March 2020.

Summary

- EBW Equipment Development Phase 1 (12 months)
 - EPRI, PTR-Precision Technologies , AMRC, Bridger Welding
 - EBW and vacuum equipment ordered
 - Design nearing completion (January design review)
 - Sealing design complete—validation in Q1-2020
- Demonstration Phase 2 (18 months)
- Will establish major capability to produce large vessel welds in USA!!!

Acknowledgements

US Department of Energy

Tansel Selekler, Dirk Cairns-Gallimore, Isabella van Rooyen

PTR-Precision Technologies

David Trembly, Bill Howe, John Dowd, Ed Bonewitz, Wilfried Klein, Derek Mayes

Advanced Manufacturing Center

Billy Redpath, James Coupe, Garth Nicholson, Merv Alford

Bridger Welding Engineering

Keith Bridger

Together...Shaping the Future of Electricity

