AMM Program Review

Dec 17–18

Enhancing irradiation tolerance of steels via nanostructuring by innovative manufacturing techniques

Andrew Hoffman on Behalf of Haiming Wen wenha@mst.edu

Department of Materials Science and Engineering Department of Mining and Nuclear Engineering Missouri University of Science and Technology

Acknowledgements

- Students and postdoc working on the project: Andrew Hoffman, Jiaqi Duan, Maalavan Arivu, Hans Pommerenke, Nathan Curtis, and Victor DeLibera.
- Rinat Islamgaliev from Ufa State Aviation Technical University is thanked for providing samples.
- Nuclear Science User Facility is acknowledged for supporting neutron irradiation work, especially Keith Jewell (NSUF Technical Lead) and Katie Anderson and Leslie Soderquist (Experiment Manager).
- Co-PIs: James Cole and Yongfeng Zhang at INL.
- This research is financially supported by U.S. Department of Energy, Office of Nuclear Energy through the NEET-NSUF (Nuclear Energy Enabling Technology - Nuclear Science User Facility) program (award number DE-NE0008524).

Why We Go into NANO

Strengthening mechanisms:

A. Work hardening: dislocation-dislocation interaction

- B. Solid solution strengthening: solute-dislocation interaction
- <u>C. Particle strengthening</u>: dislocation-particle interaction Including precipitate strengthening and dispersion strengthening
- D. Grain boundary strengthening: dislocation-grain boundary interaction

Hall-Petch relationship:

$$\sigma_{\rm y} = \sigma_0 + k_{\rm y} \cdot d^{-1/2}$$

 σ_0 , k_y: material constants

Nanocrystalline material: single or multiple-phase polycrystals with structural features (typically grains) smaller than 100 nm

- D=5 nm, fraction of GBs=50%
- D=100 nm~1 μm, ultrafine grained materials; D=1~10μm, fine grained materials; D>10 μm, coarse grained conventional materials

H. Gleiter, in Proceedings of the second Ris International Symposium on Metallurgy and Materials Science, 1981, Denmark: Ris National Laboratory, Roskilde

GBs as Sinks for Irradiation Defects

- In-situ TEM imaging during ion irradiation of NC Ni films
- Grain boundaries as sinks for irradiation-induced dislocation loops and segments

Ion Radiation Resistance of UFG 304 Steel

Sun C, et al., Scientific Reports 5 (2015) 7801

Much smaller void density and void swelling in UFG sample
Much higher strength of UFG

Manufacturing of bulk nanostructured metals

Severe plastic deformation (SPD)

High pressure torsion (HPT)

Equal-channel angular pressing (ECAP)

Equal-channel angular pressing

NEET-NSUF Project: Enhancing Irradiation Tolerance of Steels Via Nanostructuring

Funded by DOE, Office of Nuclear Energy through the NEET-NSUF program (award number DE-NE0008524). 10/1/2016 – 09/30/2023.

9

Sample Preparation Using Severe Plastic Deformation

Element	SS304	SS316	G91	Kanthal-	(HPT)	Material	Technique	Temp (°C)	# of
				D					passes/turns
Fe	Balance	Balance	Balance	Balance		SS 304	НРТ	300	10
Cr	17.22	16.18	8.38	20.57		SS 316	HPT	300	10
Ni	9.56	12.24	0.17	0.26		Grade 91	НРТ	300	10
C	0.03	0.02	0.11	0.026	Tananan	Kanthal D	HPT	300	10
Мо	0.12	2.47	0.9	-		SS 304	ECAP	450	6
V	0.04	0.04	0.2	0.03		SS 316	ECAP	380	6
Ti	0.26	0.32	-	0.02		Grade 91	ECAP	300	6
Cu	0.16	0.23	0.17	0.02	Equal-channel angular pressing (ECAP)	Kanthal D	ECAP	520	6
Si	0.24	0.37	0.46	0.24	Plunger	(b)			
W	0.04	0.04	-	-		Route A		Route B c	
Р	0.03	0.03	0.01	-					
Mn	-	-	0.43	0.18	•				
Nb	-	-	0.06	-	Ψ.	Route B		Route C	
AI	-	-	-	4.79	Sample				

Hardness Testing of Nanostructured Steels

- Hardness tested using Vickers microindenter
- HPT samples having extremely high microhardness (~540 Hv)
- Hardness of HPT higher due to smaller grain size, higher strain, and more precipitate hardening
- Difference between the hardness of ECAP 316 and 304 may come from the difference in processing temperature (380 vs 450 °C)
- HPT samples show homogenous microstructure/grain size beyond 2mm from center of disc

Compression Testing of ECAPed Steels

• Compression testing could not be used on HPT samples due to specimen geometry

- ECAP steels have significantly higher compressive tensile strength
- CG 304 has significantly more strain hardening than ECAP 304
 - Looking into enhanced stability of austenite phase of nanostructured steels (suppressed deformation induced martensite transformation)

SPD 304 microstructure

Misorientation Angle (θ)

50

60

0.5

Relative Frequency

0.1

0.0

- ECAPed microstructure inhomogeneous with significant fraction of low angle grain boundaries
- HPT microstructure is homogenous with high angle grain boundaries
- Deformation at elevated temperatures important in suppressing deformation induced martensite transformation
 - All SPD austenitic samples are fully austenitic

Microstructure of ECAP G91

M₂₃C₆ M=Cr, Mo Average: 116 nm Number density: 0.46x10¹² m⁻² Area Fraction: 2.1%

MX M=Nb, V Average: 59 nm Number density: 0.32x10¹² m⁻² Area Fraction: 0.41%

Microstructure of HPT G91

Microstructure of ECAP Kanthal-D

- Grain boundary misorientation angle
- ECAP KD has a non- homogenous microstructure.
- Multimodal grain size distribution.
- The volume fraction of low angle grain boundaries (2° -15°) is ~40%.

Cr₂₃C₆ precipitation in ECAP and HPT FeCrAl

ECAP

HPT

CG Annealed at 520 C

SPD causes Cr enriched carbide precipitation in Kanthal-D

Segregation/Precipitation in 304 after HPT

- Significant segregation of Mn, Si, Ni, and P along grain boundaries
- Cu nanoprecipitates near/along grain boundaries, Ni-Mn-Si enriched precipitates along grain boundaries, needle like Cr precipitates
- Segregation behavior attributed to high point defect density/flux

Concerns with thermal stability of nanostructured materials

So, it is important to study the thermal stability of nanostructured materials.

Annealed microstructure of HPT G91

0.0

As HPT 500°C

550°C

(homogenous grain growth) at all annealing temperatures.

Grain growth leads to decrease in hardness

600°C 650°C 700°C

Annealed microstructure of ECAP G91

Microstructure is stable up to 500-550°C

Very inhomogeneous microstructure formed during annealing above 650°C, suggesting recrystallization.

Mechanism for Discontinuous Grain Growth in ECAP Grade 91

Fig. 11. Schematic diagram of discontinuous grain growth in the ECAP Fe-9Cr steel during annealing: (a-b) grain growth starts from the cluster of HABs, leading to a reduction in HABs; (c) the new grain consumes the thermally stable regions of LABs.

Annealed microstructure of ECAP Kanthal-D

Annealed microstructure of HPT Kanthal-D

Hardness (HV)

600 -

50

- HPT Kanthal-D thermally unstable at 500°C.
- Homogeneous grain growth due to stored grain boundary energy causing grain growth

Annealing Effects on ECAP 304

- No decrease in hardness after annealing below 700 C
- Increase in annealing temperature causes decrease in texture
- Significant recrystallization after annealing at 700 C, Cr enriched M₃C precipitation also occurs

Nanoindentation of Ion Irradiated 304

- Nano-indentation performed to a depth of 150nm
- Although ECAP and CG have similar change in hardness at 500°C, the relative change in hardness is significantly reduced in ECAP sample
- Radiation induced softening of HPT 304 occurs due to radiation induced grain growth

Effect of Grain Size on Ion Irradiation Induced Dislocation Loop Size

Frank loop size decreases significantly with grain size

•

Enhanced Austenite Stability of Nanostructured 304

Nanostructured steels resistant to radiation induced austenite to ferrite transformation

Enhanced Resistance to Radiation Induced Segregtion in HPT 304

GB	# of GBs	∆at.% Fe	∆at.% Cr	∆at.% Ni	∆at.% Si	Δat.% Mo	∆at.% Co
Description							
Annealed	6	-3.5±2.4	+1.5±1.0	0	+0.6±0.4	1.2±0.7	0
Irradiated UFG	3	-11.6±6.0	-7.3±1.6	+13.8±3.0	+3.7±1.8	0	+0.2±0.1
Irradiated NC Grains	18	-4.3±1.4	-3.9±1.4	+5.3±1.8	+2.2±0.6	0	+0.1±0.04
Irradiated NC Cr enriched	4	-6.6±2.6	1.5±0.9	+2.0±1.0	+2.0±0.3	+0.4±0.1	0

Summary

- HPT and ECAP processing significantly improves the hardness/strength of steels.
- Grain size of HPT samples is smaller (<100nm) than ECAP samples (~500nm)
- ECAP samples have high number fraction of low angle grain boundaries, HPT samples contain mostly high angle grain boundaries
- SPD can cause segregation and precipitation
 - Cr carbides found in ECAP and HPT Kanthal-D
 - Ni and Si segregation towards grain boundaries in HPT 304 cause precipitation of G-Phase
 - Cu precipitation in HPT 304
- Large number fraction of low angle grain boundaries in ECAP samples enhance thermal stability
 - Primary coarsening mechanism is recrystallization in ECAP samples vs grain growth in HPT samples
- Ion irradiation of 304 shows enhanced radiation tolerance of nanostructured austenitic steels
 - Resistance to radiation induced hardening, smaller loops sizes, enhanced austenite stability, and reduced segregation

List of Publications

- A. Ganeev, M. Nikitina, V. Sitdikov, R. Islamgaliev, A. Hoffman, H. Wen, Effects of the tempering and high-pressure torsion temperatures onmicrostructure of ferritic/martensitic steel grade 91, Materials (Basel). 11 (2018). doi:10.3390/ma11040627.
- A. Hoffman, H. Wen, R. Islamgaliev, R. Valiev, High-pressure torsion assisted segregation and precipitation in a Fe-18Cr-8Ni austenitic stainless steel, Mater. Lett. 243 (2019) 116–119. doi:10.1016/j.matlet.2019.02.030.
- J. Duan, H. Wen, C. Zhou, R. Islamgaliev, X. Li, Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe-9Cr alloy, Materialia. 6 (2019) 1– 5. doi:10.1016/j.mtla.2019.100349.
- J. Duan, H. Wen, C. Zhou, X. He, R. Islamgaliev, R. Valiev, Discontinuous grain growth in an equal-channel angular pressing processed Fe-9Cr steel with a heterogeneous microstructure, Mater. Charact. (2019) 110004. doi:10.1016/J.MATCHAR.2019.110004.
- M. Arivu, A. Hoffman, J. Duan, H. Wen, R. Islamgaliev, R. Valiev, Severe plastic deformation assisted carbide precipitation in Fe-21Cr-5Al alloy, Mater. Lett. 253 (2019) 78–81. doi:10.1016/j.matlet.2019.05.139.

List of Publications in Progress

- M. Arivu, A. Hoffman, J. Duan, H. Wen, R. Islamgaliev, R. Valiev, "Comparison of Thermal stability of Equal Channel Angular Pressed and High Pressure Torsioned Fe-21Cr-5Al alloy", to be submitted to MSEA.
- J. Duan, H. Wen, C. Zhou, X. He, R. Islamgaliev, R. Valiev, Annealing behavior of high-pressure torsion processed Fe-9Cr steel, Mater Charact, (under review).
- J. Duan, H. Wen, L. He, K. Sridharan, R. Islamgaliev, R. Valiev, "Improving the irradiation resistance in Fe-9Cr steel through grain refinement" (in preparation).
- A. Hoffman, M. Arivu, H. Wen, L. He, K. Sridharan, X. Wang, W. Wrong, X. Liu, L. He, Y. Wu, "Enhancing Resistance to Irradiation Induced Ferritic Transformation Through Nano-structuring of Austenitic Steels", to be submitted to Acta Materialia
- A. Hoffman, M. Arivu, I. Robin, H. Wen, R. Valiev, R. Islamgaliev, H. Pommerenke, N. Curtis, V. DeLibera, M. Gougar, "Enhanced Austenite Stability of Ultra-fine Grained Austenitic Steel" To be submitted to MSEA
- M. Arivu, A. Hoffman, H. Wen, L. He, K. Sridharan, J. Burns, "Effect of Grain Size on Ion Irradiated 304 Austenitic Steel" To be submitted to Journal of Nuclear Materials
- A. Hoffman, Y. Zhang, M. Arivu, H. Wen, "Competing Effects of Kinetic and Thermodynamic Segregation in Ion Irradiated Nanocrystalline Austenitic Steel", to be submitted to Scripta Materialia

Neutron irradiation

- Conducted at Advanced Test Reactor (Samples in ATR since June 2018)
- Four irradiation conditions and capsules Capsule 1 at 300 °C to 2 DPA (8 months) Capsule 2 at 300 °C to 6 DPA (2 years) Capsule 3 at 500 °C to 2 DPA (8 months) Capsule 4 at 500 °C to 6 DPA (2 years)
- Tensile, hardness and TEM specimens
- Non-instrumented standard capsule experiments
- Melt wires and SiC to monitor temperature
- Flux wires to measure flux
- ~500 specimens in total

AMM Program Review

Dec 17–18

Enhancing irradiation tolerance of steels via nanostructuring by innovative manufacturing techniques

Haiming Wen wenha@mst.edu

Department of Materials Science and Engineering Department of Mining and Nuclear Engineering Missouri University of Science and Technology

Microstructure of As-HPTed Kanthal-D

Transmission Kikuchi Diffraction

Longitudinal direction

Transmission Electron Microscopy

- Average grain size of 75 ± 40 nm with an equiaxed microstructure.
- The volume fraction of high angle grain boundaries is 80%.
- 20% higher than ECAP KD (higher grain boundary energy).