2020 SETO PEER REVIEW # **Emerging Photovoltaics: III-V** Goals and portfolio overview Dr. Susan Huang, Technical Advisor #### This? #### Or this? #### **Effect of Efficiency** ### III-V efficiency and bandgap flexibility Hajjiah, Ali. (2020) ## **Emerging?** Time Energy Materials Costs Output Efficiency Reliability ## Possible path to \$0.30/W_{DC} #### Myles Steiner, Aaron Ptak, Emily Warren AlInP window GaAs or InGaP Cell AlGaInP AlGaAs GaAs GaAs ZnSe In₂Se₃ Bi₂Se₃ ## Mariana Bertoni #### **Acoustic Controlled** #### **Traditional Spalling** Time Energy Materials Costs Output Efficiency Reliability Figure 7. Step-by-step cost breakdown for (top) single junction GaAs solar cells at 28% efficiency and (bottom) 2J GalnP/GaAs solar cells at 30% fabricated via MOCVD in the base case Assumes U.S. manufacturing at 3,800 cells/month (170kW/year - 182kW/year, depending on the efficiency); the CMP bar is gray because we do not have a bottom-up CMP cost model, but rather total costs obtained via industry interviews.