

2020 SETO PEER REVIEW

Emerging Photovoltaics: III-V

Goals and portfolio overview

Dr. Susan Huang, Technical Advisor

This?

Or this?

Effect of Efficiency

III-V efficiency and bandgap flexibility

Hajjiah, Ali. (2020)

Emerging?

Time Energy Materials Costs Output Efficiency Reliability

Time Energy Materials

Costs

Output

Efficiency
Reliability

Time Energy Materials

Costs

Output

Efficiency

Reliability

Time Energy Materials

Costs

Output

Efficiency Reliability

Time Energy Materials

Costs

Output

Efficiency Reliability

Possible path to \$0.30/W_{DC}

Myles Steiner, Aaron Ptak, Emily Warren

AlInP window GaAs or InGaP Cell AlGaInP AlGaAs GaAs

GaAs
ZnSe
In₂Se₃
Bi₂Se₃

Mariana Bertoni

Acoustic Controlled

Traditional Spalling

Time Energy Materials

Costs

Output

Efficiency
Reliability

Figure 7. Step-by-step cost breakdown for (top) single junction GaAs solar cells at 28% efficiency and (bottom) 2J GalnP/GaAs solar cells at 30% fabricated via MOCVD in the base case

Assumes U.S. manufacturing at 3,800 cells/month (170kW/year - 182kW/year, depending on the efficiency); the CMP bar is gray because we do not have a bottom-up CMP cost model, but rather total costs obtained via industry interviews.