

Tribal Webinar

Energy Efficiency Projects From Concept to Completion

March 25th, 2020 Jimmy Salasovich, NREL Tony Jimenez, NREL Agenda

Agenda

	1	Work-Flow of Existing Buildings
	2	Work-Flow of New Construction Bu
	3	Financing Options
	4	Case Studies
	5	Summary
Pho	otos: Jimmy Salas	ovich, NREL

Work-Flow of Energy Projects

Existing Buildings

Energy

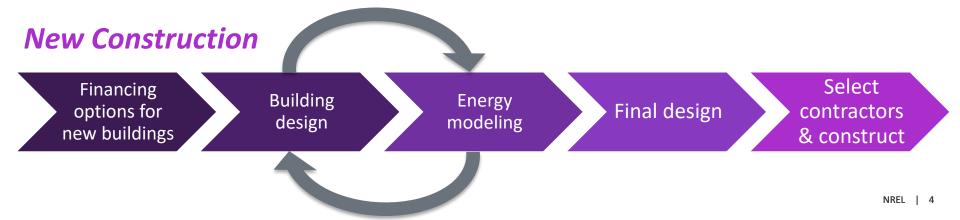
management

& tracking

*Tony Jimenez will be presenting on financing options in the following presentation

Financing

options*


• Some steps in the work-flow might be omitted based on the size and complexity of the building

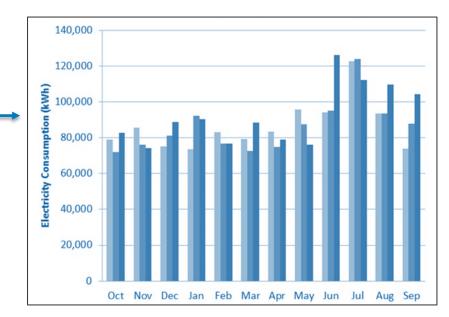
Energy audit

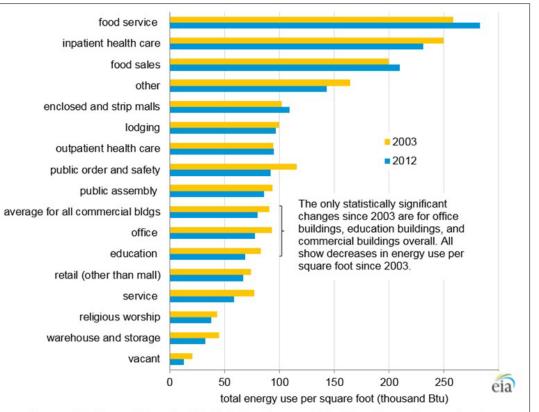
• Financing options should be considered early and often

Prioritize

buildings

Existing Building: Work-Flow of Energy Projects


Existing Buildings


- The following three steps for existing buildings will be discussed in more detail
 - Energy management & tracking
 - Prioritize buildings
 - Energy audit

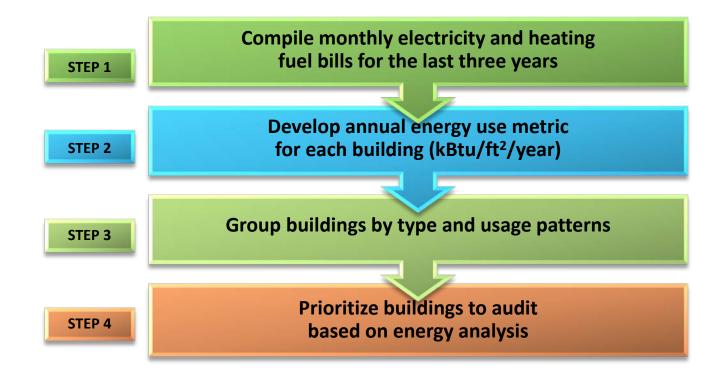
Existing Buildings: Energy Management

- Only done on existing buildings
- Compile current and past utility bills
- Track energy use throughout time
 - Spreadsheet tracking
- Benchmark energy consumption
 - CBECS database
- Track Green House Gas (GHG) emissions
- Set agency goals
 - Implement financially viable EEMs
 - Reduce building energy intensity
 - Increase energy efficiency
- Conduct building energy assessments/audits
- Implement energy efficiency projects that are financially viable

Existing Buildings: Benchmark Buildings CBECS

Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey.

Commercial Buildings Energy Consumption Survey (CBECS) database


•

- <u>https://www.eia.gov/consumptio</u> <u>n/commercial/</u>
- Compare your building's energy performance to similar building types
 - Offices, schools, hospitals, etc.
 - Units: kBtu/ft²/year
- If your building has much higher energy used compared to CBECS, this might be a good indicator that there are opportunities to save energy/money

Existing Buildings: Prioritize Buildings

- Analyze past/current energy consumption in buildings
 - Gather monthly utility bills for all energy types
 - Electricity, natural gas, propane, fuel oil, steam, chilled water
 - Identify building energy use patterns
 - Is the energy use for a particular building much higher than a comparable building?
 - Is energy use highest in the summer or winter months?
 - Is heating energy the highest annual energy cost?
 - Compare to CBECS database
- Prioritize buildings to assess
 - Use monthly utility bills to develop annual energy use metrics for each building
 - Group buildings by type and usage patterns
 - Consider building age, schedule, condition, etc.

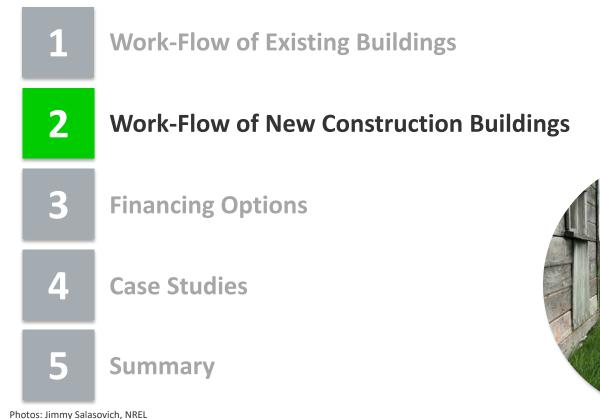
Existing Buildings: Baseline Energy Consumption

Existing Buildings: **Energy Audit**

- Identify opportunities to reduce energy consumption and cost
- Provide information to owner/operator to decide which recommendations to implement
- Typical steps in an energy assessment/audit:
 - Collect/analyze historical energy use data
 Study building and operating trends

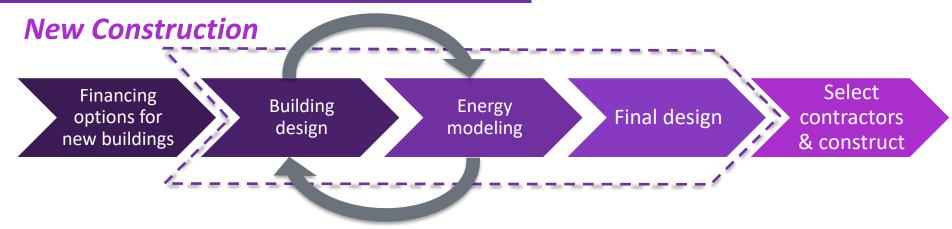
 - Collect building information and consult with staff/occupants Identify potential modifications to reduce energy and cost

 - Perform engineering and economic analysis
 - Prepare a prioritized list of recommendations Post-audit Report results


- Audit

Existing Buildings: ASHRAE Audit Levels

- Level 1
 - Walk-through analysis
- Level 2
 - Energy survey and analysis
- Level 3
 - Detailed analysis of capitalintensive modifications


ASHRAE Process Tasks	Level I Audit	Level II Audit	Level III Audit
Conduct preliminary energy analysis (PEA)	Х	Х	Х
Conduct walk through survey	Х	Х	Х
Identify low-cost/no-cost recommendations	Х	Х	Х
Identify capital improvements	Х	Х	Х
Review mechanical and electrical (M&E) design and condition and O&M practices		Х	Х
Measure key parameters		Х	Х
Analyze capital measures (savings and costs, including interactions)		Х	Х
Meet with owner/operators to review recommendations		Х	Х
Conduct additional testing/monitoring			Х
Perform detailed system modeling			Х
Provide schematic layouts for recommendations			Х
ASHRAE Reporting Tasks	Level I Audit	Level II Audit	Level III Audit
Estimate savings from utility rate change	Х	Х	Х
Compare EUI to EUIs of similar sites	Х	Х	Х
Summarize utility data	Х	Х	Х
Estimate savings if EUI were to meet target	Х	Х	Х
Estimate low-cost/no-cost savings		х	х
Calculate detailed end-use breakdown		х	х
Estimate capital project costs and savings		х	х
Complete building description and equipment inventory		х	х
Document general description of considered measures		х	х
Recommend measurement and verification (M&V)			12000
method		Х	Х
Perform financial analysis of recommended EEMs		Х	Х
Write detailed description of recommended measures			Х
Compile detailed EEM cost estimates			Х
		NREL	

Agenda

New Construction: Work-Flow of Energy Projects

- The following three steps for new construction buildings will be discussed in more detail
 - Building design
 - Energy modeling
 - Final design

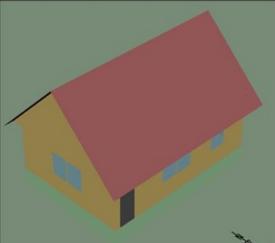
New Construction: Building Design

- Three steps to building design:
 - Schematic Design
 - Define the use of the building
 - Define size and form
 - Define site location
 - Design Development
 - Advance the design to include specific wall types, lighting, HVAC, etc.
 - Construction Documents
 - The drawings & specifications used to build a building

Iterative building energy modeling is performed throughout these phases to optimize building designs in terms of capital cost and energy performance

New Construction: Residential Energy Modeling

BEopt


- Residential building energy modeling tool
- Free web download
 - https://beopt.nrel.gov/downloadBEopt2

AKWarm

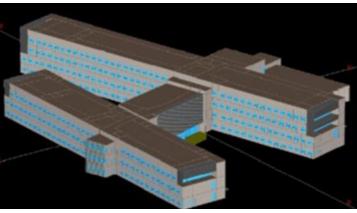
- Residential & commercial building energy modeling tool
- Free web download
 - https://www.ahfc.us/efficiency/tools/akwarm-energy-rating-software

*Energy modeling can also be used in the energy audit phase for existing buildings

New Construction: Commercial Energy Modeling

EnergyPlus

- Commercial building energy modeling tool
- Free web download
 - https://energyplus.net/downloads


eQUEST

- Commercial building energy modeling tool
- Free web download
 - http://www.doe2.com/equest/

AKWarm

- Residential & commercial building energy modeling tool
- Free web download
 - https://www.ahfc.us/efficiency/tools/akwarm-energy-rating-software

*Energy modeling can also be used in the energy audit phase for existing buildings

New Construction: Final Design

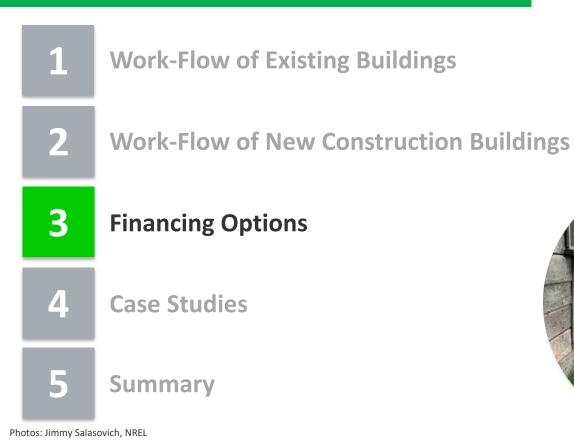
These concepts also apply to existing buildings

- ✓ Passive building design
 - Building orientation, window placement, overhangs, operable windows, thermal mass
- ✓ Efficient envelope
 - □ Roof & wall insulation, high-performance windows & doors, air-sealing
- ✓ Efficient lighting
 - □ LED lighting, lighting occupancy sensors
- ✓ Efficient plug loads
 - EnergyStar appliances & equipment
- ✓ Efficient HVAC
 - Efficient heating & air-conditioning equipment, programmable thermostats, premium efficiency motors, variable frequency drives

Selecting a Contractor

✓ Get several quotes

- Make decisions based on best value, and not necessarily the lowest bid
- ✓ Licensed & insured
 - Ensure the contractors are well-established and accountable
- ✓ Certified energy professionals
 - There are many types of certification programs
 - More information provided on the following slide


✓ Local

- Ensures that the contractors understand how local climate conditions impacts building energy use
- Allows site owner to verify that similar energy projects have been implemented by the contractor with a high level of quality

Common Certifications for Energy Professionals

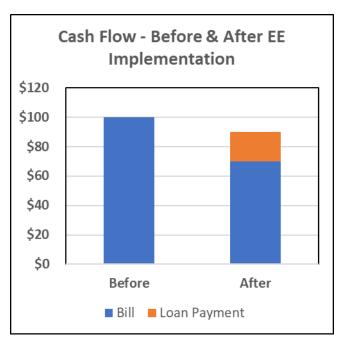
- Certified energy professionals for commercial buildings
 - The Association of Energy Engineers: Certified Energy Auditor (CEA) <u>https://www.aeecenter.org/certifications/certified-energy-auditor</u>
 - The Association of Energy Engineers: Certified Energy Manager (CEM) https://www.aeecenter.org/certifications/certified-energy-auditor
 - ASHRAE: Building Energy Assessment Professional (BEAP)
 <u>https://www.ashrae.org/professional-development/ashrae-certification/certification-types/beap-building-energy-assessment-professional-certification</u>
 - ASHRAE: Building Energy Modeling Professional (BEMP)
 <u>https://www.ashrae.org/professional-development/ashrae-certification/certification-types/bemp-building-energy-modeling-professional-certification</u>
- Certified energy professionals for homes
 - The Building Performance Institute: Home Energy Professional (HEP) <u>https://bpi.org/certified-professionals/energy-</u> <u>auditor?gclid=Cj0KCQjw6sHzBRCbARIsAF8FMpWoWZMa6f9GVOLj_HRkgo_G6b9I_pBTnkxVSUdhLVh3FD8pbIEGLmsaAjrrEALw_wcB</u>

Agenda

Funding Options

- Pay out of Pocket
- Loans
- Energy Performance Contracting
- Grants/Rebates

A given project will often be financed using a combination of the above items


Pay out of Pocket

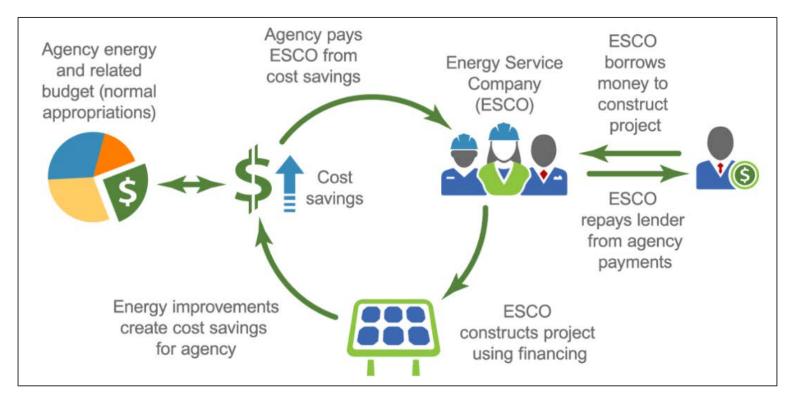
- Applicable to both commercial & residential
- Advantages
 - Simplest
 - Tribe/resident has total control
- Disadvantages
 - Need to have the funds available

Loans - Overview

- Applicable to both commercial & residential
- Wide variety of types of loans
- Advantages
 - Provides capital that may otherwise be unavailable
 - Depending upon the EEMs may be able to structure the loan so as to be cash flow positive even while paying off the loan
- Disadvantages
 - May not be cash flow positive while paying off the loan

Loans - Types

	Concessional Financing	EE Loan	EE Mortgage	PACE ¹	On-bill Financing
Market Segment	Residential? Commercial	Residential Commercial	Residential Commercial	Residential Commercial	Residential Commercial
Applicability on the reservation	High	High (in theory) Low (in practice)	Low	Low	High (where available)
Requires strong credit		Yes	Yes		
Available nationwide		Yes	Yes		
Non-traditional repayment options	Possibly			Yes	Yes
Lender may foreclose if you default			Yes	Yes	


Source: Energy Sage https://www.energysage.com/energy-efficiency/financing/

1. Property Assessed Clean Energy (PACE)

Energy Performance Contracting - Overview

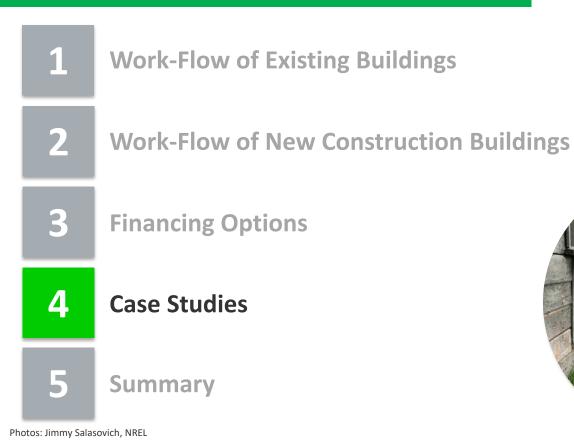
- Applicability: commercial
- Only suitable for large projects: >~\$200,000
- More information: <u>https://www.energy.gov/eere/femp/about-federal-energy-savings-performance-contracts</u>
- Advantages
 - Energy Services Contractor (ESCo) funds and executes the project
 - Guaranteed savings (depending upon the contract vehicle) => cash flow positive
- Disadvantages
 - Performance contracts require a lot of effort to manage
 - Don't have total control over the project
 - You pay a premium for going this route

Energy Performance Contracting – What is It?

Energy Performance Contracts – Types (Federal)

- Energy Savings Performance Contract (ESPC)
 - Guaranteed savings
 - Energy Conservation Measures (ECMs): Any
 - Minimum Project Size: \$2,000,000
- ESPC ENABLE
 - Guaranteed savings
 - Streamlined ESPC vehicle/process but only for specific ECMs
 - Minimum Project Size: ~ \$200,000 (in practice)
- Utility Energy Services Contract (UESC)
 - An energy performance contract with a utility
 - Somewhat different regulations than with an ESPC. For example, savings not guaranteed.
 - Minimum project size: ??? (Needs to be large enough to justify the transaction costs/effort

Grants / Rebates / Tax Deductions


- Applicability: commercial & residential
- Most utilities have some sort of rebate program
- Expenditures on EE may be eligible for a tax deduction
- Advantages
 - Free money!!!!!
- Disadvantages / Caveats
 - Not enough grant money to meet all the need
 - Some grant vehicles, such as tax credit financing, are complex
 - Need to meet grant reporting and other requirements
 - Grant timeline may not mesh with other timelines
 - Use of tax deductions requires an appropriate tax liability

Grants / Rebates – Where to Look

- Database of State Incentives for Renewable Energy (DSIRE) (Comprehensive listing of federal, state, & utility incentives): <u>https://www.dsireusa.org/</u>
- Department of Energy Office of Indian Energy: List of funding sources <u>https://www.energy.gov/indianenergy/funding/current-funding-opportunities</u>
- Department of Energy Office of Indian Energy: Energy Development Assistance Tool <u>https://www.energy.gov/indianenergy/energy-development-assistance-tool</u>
- The web site of your local utility

Agenda

Case Study #1: Existing Single-Family Homes

- Identify financially viable energy conservation and renewable energy measures from these options:
 - 1. Programmable thermostats
 - 2. LED lighting
 - 3. Air sealing
 - 4. Blown-in cellulose in the attic up to R-60
 - 5. Solar photovoltaics up to 5 kW in 1 kW increments

- The major challenges at this site include:
 - ✓ Very high utility rates
 - Remote (in rural Alaska)
 - ✓ Harsh climate
 - Limited renovation window
 - ✓ Subsistence living (many freezers)

BEopt Energy Modeling Software

- BEopt is a residential building software simulation
 - Based on EnergyPlus simulation engine
 - Models single-family and multi-family residences
- Finds cost-optimal building design
- Provides a path to Net Zero Energy (NZE) residences

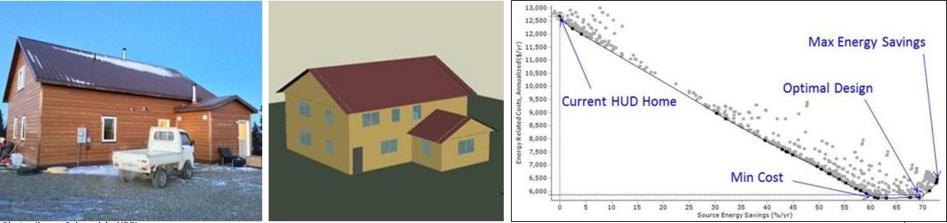
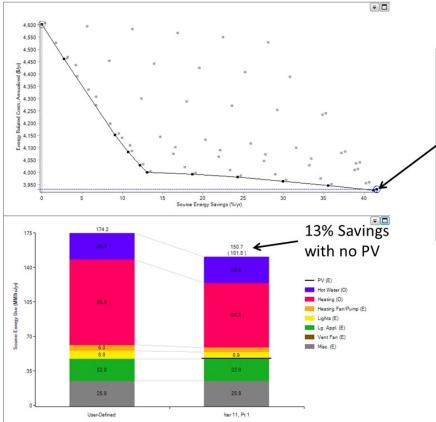
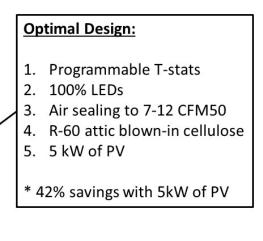


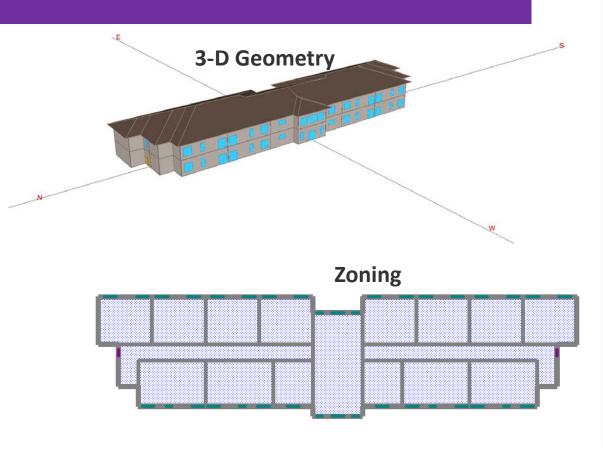
Photo: Jimmy Salasovich, NREL


Single-Family Home Model


	BUILDING		
Type & ID#		nya's House)
Use		Prefab Hous	
# stories		1	
# occupants		6	
Hrs/wk			
# windows & type	Vinyl Double Casement	4x (2'x	(4'); 2x (4'x4')
Heat type (B/F)	Toy	o Lazer 73	
DHW type (oil/elec)	Oil Mizer (not curre	ently connect	ted but soon)
	LIGHTING		
TYPE	Watts	# FIXT	# BULBS
CFL-A	13	9	1
CFL-A	13	2	1
CFL-A	13	1	1 (exterior)
CFL-A			
FLOR T12			
FLOR T8			
	PLUG LOADS		
TYPE	QTY		
PC			
Pers Print			
	REFRIGERATION (ag	ze)	
refer	1 newer	standa	ard efficiency
freezer	1 newer	En	ergy Star
	NOTES		
Wall R-value: 2x6 wood	d frame (assumed)		
Attic R-value: Estimate	d R-30		
Floor R-value: Estimate	d R-30		
Wood stove for backup)		
Top loading clothes wa	sher; electric dryer		
All 2-lamp CFL light fixt	ures had only 1 lamp in th	em	
1x 40" flatscreen TV			
Pre-paid electric meter			
Toyo has programmabl	e t-stat		
This is a 20'x60' pre-fat	house		

- This single-family home is in a remote Alaskan village
 - R-30 attic insulation
 - R-30 floor insulation
 - CFL lighting
 - Standard refrigerator
 - Standard washing machine
 - EnergyStar™ freezer
 - Woodstove
 - Toyo stove
 - Programmable t-stat
- This type of analysis was done for a total of 10 homes in this village

BEopt Energy Modeling Results


BEopt Results Summary for 10 Homes

- The optimal/cost -effective design:
 - Programmable thermostats
 - 100% LED lighting
 - Air sealing to 7-12 CFM50
 - R-60 blown-in cellulose insulation in the attic
 - 5 kW solar photovoltaics system
- Source energy savings @ optimal design
 - 8-13% without PV system
 - 28-52% with PV system
- Due to higher energy cost and cold climate, NREL also recommends to focus on
 - Reduce space heating requirements with tight construction, increased wall/ceiling insulation, floor insulation, insulated door and window
 - Efficient HVAC and heat recovery ventilator
 - Efficient water heater
 - Efficient appliances such as EnergyStar™

Case Study #2: Multi-Family New Construction Housing

- The challenge was to determine the most cost-effective HVAC system
- Create building energy model of the future Senior Housing using design drawings
- The site is in Maine and has cold winters
- Analyze three Heating, Ventilating, and Air-Conditioning (HVAC) options for the Senior Housing
 - Fuel oil boiler for radiant floor or baseboard heating with direct expansion (DX) air-conditioners
 - 2. Fuel oil furnace with DX air-conditioners
 - 3. Air-source heat pump for heating and cooling (electric resistance supplemental heating)

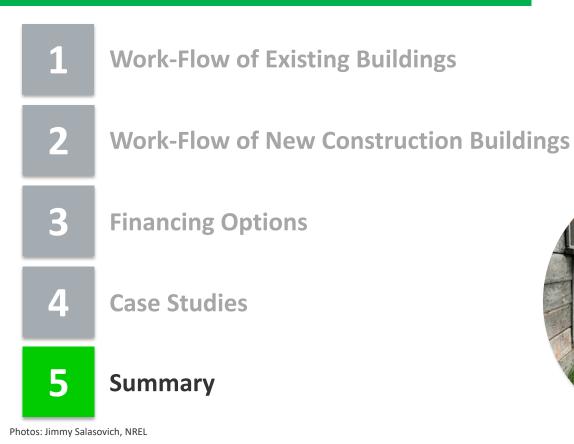
eQUEST Energy Model

- An eQUEST energy model was created for the Senior Housing to analyze various HVAC options
 - 24,000 ft² senior living facility
 - 2 floors and 24 units (8x 2-bedroom, 16x 1bedroom)
 - Commercial kitchen and dining area that serves meals Mon-Fri
 - R-30 Walls, R-50 Roof, U-0.25 windows

General Design Review

- Design drawings and specifications were provided by the design team
- Overall, the Senior Housing is designed to be energy efficient
 - High levels of wall and roof insulation and high performance windows
 - High performance HVAC options are being considered
- LED lighting is incorporated into the design
- High efficiency appliances (e.g., refrigerators, washing machines, dryers) are incorporated into the design)

HVAC Comparison


Lowest energy

cost

	Boiler for Radiant Heating with DX Air-Conditioning	Furnace with DX Air-Conditioning	Air-Source Heat Pumps
UI kBtu/ft ² /year)	57.8 59.5		47.5
lectricity Use kWh/year)	271,772	294,586	344,067
Electricity Cost (\$/year)	ost \$48,919 \$53,025		\$61,932
Fuel Oil Use (gallons/year)	3,572	3,324	0
Fuel Oil Cost (\$/year)	\$9,823	\$9,140	\$0
Total Cost (\$/year)	\$58,742	\$62,165	\$61,932

- The energy model was used to analyze 3 HVAC options
 - Electric rate of \$0.18/kWh
 - Fuel oil rate of \$2.75/gallon
 - The design team has to consider first costs when analyzing the tradeoffs of each HVAC option

Agenda

Summary: Work-Flow of Energy Projects

Existing Buildings Select Energy Prioritize Financing Energy audit contractor & management buildings options & tracking implement ✓ Utility bills CBECS database Collect data ESPC Get multiple quotes Perform audit 3rd party Licensed & insured \checkmark Analysis Direct purchase ✓ Certified \checkmark New Construction ✓ Local Select Financing Building Energy options for Final Design contractors design modeling new buildings & construct Offices Schematic Design Residential Get multiple quotes Passive Rec centers Commercial Envelope Licensed & insured \checkmark Design \checkmark Health centers Development \checkmark Used in existing \checkmark Lighting \checkmark Certified Housing \checkmark Construction and new \checkmark Plugs \checkmark Local Documents buildings HVAC NREL | 41

Thank you!

