

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

An Ultralow Thermal Conductivity Material

Oak Ridge National Laboratory Dr. Jaswinder Sharma, Scientist 1-865-241-2333; sharmajk@ornl.gov

Project Summary

Timeline:

Start date: 10/01/2018

Planned end date: 09/30/2021

Key Milestones

Milestone 1: Achieve a particle based material with thermal conductivity ≤ 0.016 W/m.K (09/30/2019)

Milestone 2: Achieve thermal conductivity of the material ≤ 0.012 W/m.K (R12/in) with a manufacturing cost of < \$1.0/sf. 1.0-in. (09/30/2020)

Budget:

Total Project \$ to Date:

- DOE: \$173,000
- Cost Share: \$0

Total Project:

- DOE: \$750,000
- Cost Share: \$0

Key Partners:

The team has found potential partners and is in the process of talking with these partners who can guide and help in the material development and scale up.

Project Outcome:

The project aims to make a material with very high thermal insulation ($R \approx 14/in$.) by using particles. The targeted material will have a manufacturing cost <\$1/sf. x 1.0-in. and stable to humidity and fire.

ORNL will develop and test the material while engaging with potential partners for scale up and material property improvements.

Team

Material synthesis Material stabilization

Jaswinder Sharma, PhD Georgios Polyzos, PhD

Material characterization

Diana Hun, PhD André Desjarlais, PhD

Modelling & Calculations Commercialization

Srikanth Allu, PhD

David Sims

Team expertise

- Building envelopes
- Insulation materials
- Heat transport calculations and modelling
- Silica chemistry
- Polymer chemistry
- Superhydrophobic coatings
- Technology to market

Challenge

- 45 million (14.5% of population) US households make less than \$23,500 per year, and upgrading house insulation is expensive for these families
- Conventional insulation needs more space and won't be able to meet future regulations without compromising with the living space
- Aerogels and vacuum insulated panels (VIPs) are good candidates, however, high cost and durability is hindering their use in buildings
- A new material with very high insulation (R≈ 14/in) but at a lower cost (<\$1.0/sf. X 1.0-in. or ≈5-7¢/R) is required, especially, for retrofitting existing buildings without significantly affecting the wall thickness

Combination of multiple factors in one material

Current research efforts focus on making a thermal insulation material by increasing the gas/air volume fraction (reducing the solid fraction), e.g., aerogels and foams.

- Our approach focuses on making a thermal insulation material by combining several factors:
 - Increase the air volume
 - Maximize the phonon scattering at the interfaces
 - Minimize the radiative heat transfer

Enhanced phonon scattering/contact resistance

Cost reduction

- Earth abundant materials
- Low cost drying Fast freeze drying or ambient condition drying
- Minimal wastage of solvents
- No/less use of toxic materials
- Easy to handle

Key Risks and Mitigation

Risk 1. Moisture stability

- Minimal amount of moisture sensitive material
- Modify surface to make moisture repellant

Risk 2. Fire resistance

- Minimal amount of flammable materials
- Inclusion of fire-retardants

Risk 3. Particle aggregation

- Lower surface energy
- Minimize sintering
- Physical disaggregation

Risk 4. Market acceptance

Stakeholder outreach

Particles with hydrophobic surface coating

Hydrophobicity rendering functional groups

Impact

Multi-Year Program Plan Alignment

The project aligns excellently with BTO's Windows and Building Envelope Sub-program which focuses on developing and accelerating next-generation technologies & tools that reduce the amount of energy lost through building enclosures, contribute to improved occupant comfort, and have low product and installation cost.

- If successful, the project outcome will provide a material with thermal insulation 2-3 times that of the conventional materials, and equal to or 1.5 times of the aerogels, while keeping the costs 50-60% lower than that of the aerogels
- The material will provide the same thermal performance but with a thinner layer saving of occupant space
- Less transportation and disposal costs compared to the conventional insulation materials
- The high R-value (14/in.) material fits with long term goal of BTO— Energy savings by making the building envelop more insulating
- The project's market impact will be estimated by calculating the possible energy savings that can be achieved by replacing the current insulation materials

Progress

Particles and linkers used for making the material

SEM image of particles (Diameter \approx 300 nm)

Particle powder

- Particle quality and diameter affect the thermal conductivity
- Synthesis process is scalable and low cost

Small sized linkers made from wood pulp

Diglycidyl ether

H₃C CH

Bisphenol A diglycidyl ether

n-Butyl glycidyl ether

Building blocks have been synthesized and chemistries have been selected

Progress

Composite made of particles and linkers

linker

Drying

Particles used as building blocks

Slab made by crosslinking particles (*k* ≈ 0.018 W/m.K)

TPS sensor sandwiched between two sample slabs

Sample prepared by aggregating the particles

- Crosslinking particles with small linkers
 - increases the total air-volume in the material
 - Increases contact resistance/phonon scattering in the system
 - Provides a robust material
- Needs further optimization of particle/linker ratio

Progress

Main Challenge: The particle aggregation

Aggregation

- Increases direct particle-to-particle heat transfer
- Decreases the number of heterogenous interfaces
- Lowers phonon scattering
- Lowers the stability of material
- Makes the material more vulnerable to moisture

Mitigated to certain extent:

- ➤ Sonication
- > Avoiding sintering

Stakeholder Engagement

Project is in early stage, and thus we are in the initial steps to engage the stakeholders.

- Team has involved ORNL technology to market manager, David Sims for presenting the work at various platforms, e.g., TechConnect Conference
- Contacting industries who can guide us in product development and material scale up
- Contact with experts from other National Labs/Universities for further guidance for final product development

Remaining Project Work

- Address particle aggregation issue
- Further lower the thermal conductivity of the material
- Test and improve mechanical properties for easy handling
- Test and improve moisture stability and fire-resistance of the material —— enhanced durability and safety
- Engage with stakeholders

Thank You

Performing Organization: Oak Ridge National Laboratory (ORNL) PI Name and Title: Dr. Jaswinder Sharma, Scientist PI Tel and/or Email: 1-865-241-2333; sharmajk@ornl.gov

REFERENCE SLIDES

Initial Manufacturing Cost Estimates

Material	Estimated cost <i>or</i> from online vendors (\$)	Cost /sf.inch (\$)
Particles	≈0.5/sf.inch	≤0.5
Linkers	≈3.0/kg	<0.01
Carbon black	≈0.22/lb	<0.0005
Miscellaneous (electricity, water, waste disposal, labor, fire-retardants, etc.)		≈.0.40
Total manufacturing cost		\$0.91/sf.inch
Total manufacturing cost (1000,0000 sf. Scale)		\$0.50/sf.inch

Project Budget

Project Budget: \$750,000 Variances: No. Cost to Date: \$145,000 Additional Funding: No.

Budget History								
FY 2	2018	FY 2019 (current)		FY 2020 – FY 2021 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$93K	\$0	\$157K	\$0	\$500K	\$0			

Project Plan and Schedule

Project Schedule												
Project Start: 10/01/2018	Completed Work											
Projected End: 09/30/2021	Active Task (in progress work)											
	Milestone/Deliverable (Originally Planned) use for											
	Milestone/Deliverable (Actual) use when met on time											
		FY2019				FY2	020		FY2021			
Task	Q1 (Oct-	Q2 (Jan-	Q3 (Apr-	Q4 (Jul-Sep)	Q1 (Oct-	Q2 (Jan-	Q3 (Apr-	Q4 (Jul-Sep)	Q1 (Oct-	Q2 (Jan-	Q3 (Apr-	Q4 (Jul-Sep)
Past Work			_	_	_							
Q1 Milestone: Selected candidate strategies for making particle-based insulation material based on literature review												
Q2 Milestone: Selected a drying strategy that can produce a material with targeted cost (\$3.6 sf.inch installed cost) and thermal conductivity = 0.01 W/m.K (R14.4/in) at the end of the project												
Current/Future Work												
Q3 Milestone: Achieved a particle/linkers based material with thermal conductivity \leq 0.018 W/m.K (R8/in) Q4 Milestone: Reported estimate of the potential cost of 1 ft x 1ft x 0.5 in. material when produced at an industry scale (>1 million ft2/year)												
Q4 Go/No-Go Decision: Achieved a particle based material with thermal conductivity \leq 0.016 W/m.K (R9/in)												
Q1 Milestone: Achieved a thermal conductivity ≤0.015 W/m.K (R9.6/in.)												
Q2 Milestone: Achieved thermal conductviity 0.014 W/m.K (R10.3/in.)												
Q2 Milestone: Achieved a material with tensile strength \ge 50 kPa												
Q3 Milestone: Material retained 85% of its thermal resistance after being exposed to 60% relative humidity for two weeks							•					
Q4 Milestone: Material passed ASTM E1321 flame spread test												
Q4 Go/No-Go Decision: Achieved a particle based material with thermal conductivity ≤ 0.012 W/m.K (R12/in)												
Q1 Milestone: Made a 4-in. X 4-in. X 0.5-in. slab of the material												
Q2 Milestone: Retained the thermal conductivity ≤ 0.01 W/m.K (R14.4/in), mechanical strength ≥ 50 kPa, and passed the 60% humidity treatment test.												
Q3 Milestone: Calculated the energy savings and payback period												
Q4 Milestone: Report findings from interaction with industries that can manufacture the material at scale												
Q4 Deliverable: A material with R14/inch with a manufacturing cost ≤\$1/sf. X in.												