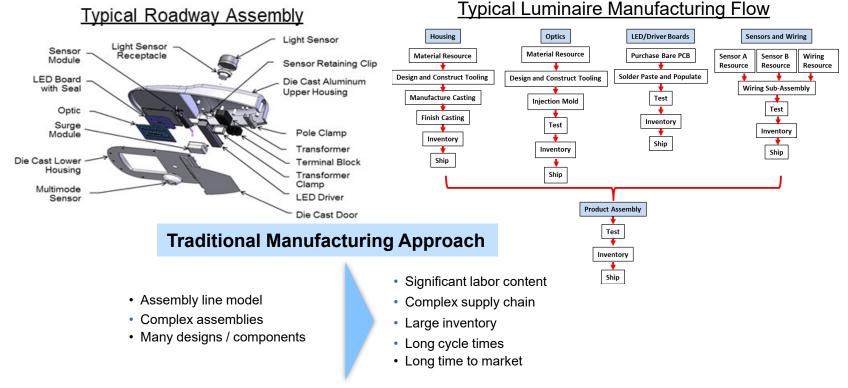


Additively Manufactured Luminaire: Process and Material Challenges (things that keep me awake at night)

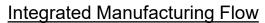

John Trublowski – Eaton Corporation (Award: DE-EE0008722)

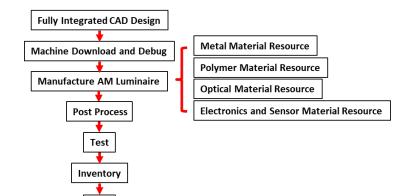
DOE Workshop, San Diego, CA Jan. 28-30, 2020

© 2020 Eaton. All Rights Reserved.

Luminaire Assemblies: Where are we today?

Luminaire Assemblies: Where do we want to be?


Integrated Roadway Concept


Eaton Concept Prototype (2017)*

- Fully printed, integrated circuitry with LED, driver, sensors and antennas
- Minimal part count
- Simplified assembly

Fully Integrated Manufacturing Approach

- "Print on demand" model
- · Few components and assemblies
- Integrated mechanical/electronics

• Reduced operations and mfg. footprint

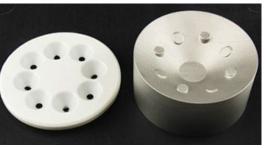
Ship

- Consolidated supply chain
- "Near" zero inventory
- · Faster time to market

* Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires, Final Report, DoE/SSL Funded Project, Contract Number: DE-EE0006260, 2016

Key Additive Manufacturing (AM) Elements to Consider

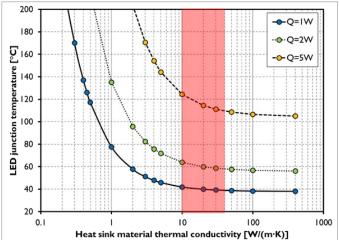
Mechanical Housing


Thermal Management

Electronics

Mechanical Housing

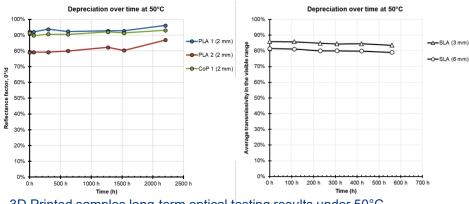
- Integrate mechanical features (minimize SKU's)
 - Heat sink
 - Mounting and adjustment hardware
 - Fasteners
 - Gaskets
- Utilize AM techniques to reduce material and weight
 - Skins on scaffolds
 - Vary cross section based on requirements
- Post processing
 - Cost impact so minimize
- Polymer or Metal?
 - Weight, cost impact
 - Environmental exposure requirements (polymer may be better from a corrosion perspective)
 - Polymer may be printed on metal (not vice versa)


Lattice construction for reducing materials and weight (Eaton Corp.)

Thermal Management

- AM material properties may differ from "wrought"
 - Porosity effects
 - Thermal properties may differ as a function of print direction
 - Filler segregation (in polymers)
- Minimal manufacturing constraints
 - Not limited by traditional heat sink fabrication methods
 - May require some post processing to achieve full properties
- Polymer or Metal?
 - Validate LED junction temperature with thermal simulation
 - New materials emerging every day
 - Metals: Al alloys, Cu, Ni super alloys, Ti, steels
 - Polymer with nano-fillers: ceramic, Carbon, nano-tubes (alignment still an issue), Cu

Material	Thermal Conducvtivity (Wm ⁻¹ K ⁻¹)	Comments
Cast Aluminum	90-160	Published but actual = 80-90
Printed Al Alloy	34 - 60	As Printed
Printed Al Alloy	42-72	Estimate, Post Process 1
Printed Al Alloy	60 - 102	Estimate, Post Process 2
Thermally Conductive Polymer A	3.5	Molded
Thermally Conductive Polymer A	3.5	Measured in direction of print
Thermally Conductive Polymer A	2.5	Measured normal to print direction


Estimated LED junction temperature based on thermal resistance model (1-5 W LED thermal load on a 10×10 cm² x 2.5 mm thick sink).

Optics

3D Printed Optic for Modular Concepts

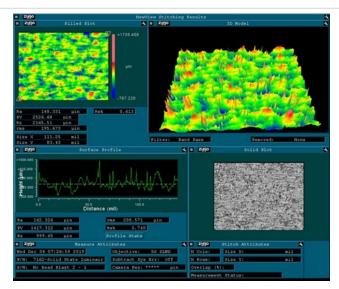
3D Printed samples long-term optical testing results under 50°C elevated temperature (reflective on right and transmissive on left)*

- Material choices still limited
 - Metals
 - Polyurethanes, acrylics, some polycarbonate
 - Silicones emerging
- Optic design
 - Optical properties still behind traditional methods
 - Reflective ahead of transmissive (material constraint)
 - Complexity typically not an issue
 - Surface finish and color capability still limited
- Environmental exposure
 - Temperature
 - UV exposure still a problem for some materials

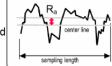
(*O. Privitera, Y. Liu, I. Perera, J. Freyssinier, N. Narendran, "Optical properties of 3D printed reflective and transmissive components for use in LED lighting fixture applications," Proc. SPIE 10940, Light-Emitting Devices, Materials, and Applications, 109401X (2 April 2019)

Printed Electronics on AM Structures

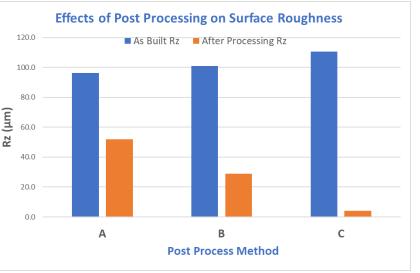
- Materials
 - Many choices but varied properties
 - **Conductors:** Silver, Copper, **Dielectrics:** polymer and inorganic, **Resistors**: Some availability but chip components are more cost effective
 - Low temperature vs high temperature processing
 - Compatibility with AM substrate materials
 - Adhesion, Surface finish, Thermal expansion
 - Design rule development (geometry vs current carrying)
- Take advantage of AM processing
 - Thickness adjustment for high and low current
 - Integrate wiring wherever possible
 - Environmental protection on electronics may be required
- Interconnects
- Component attach: Solder or Electrically Conductive Adhesive?



Printed electronic design (top) for Roadway application and functional prototype (from DOE Project # DE-EE0006260)


Printed Electronics and Surface Finish


Surface scan of Printed Electronics area on metal AM sample


- Ra = 162 μin (4.12 μm), Rz = 999 μin (25.39 μm)
- Rz is a better measurement for printing electronics
- If Rz is too high, shorting may occur through dielectric isolation layers

Ra = average abs. value of all peaks and valleys in scan area

Rz = average abs. value of 10 highest peaks and 10 lowest valleys in scan area

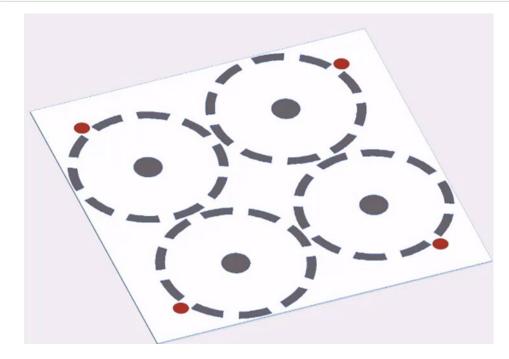
Post processing can be used to improve surface finish to acceptable level

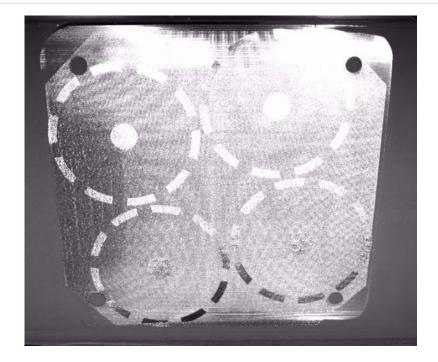
AM Metal Fabrication: L-PBF Process Example

- Laser Powder Bed Fusion (L-PBF) is the additive manufacturing industry standard for producing high-density, precision metal parts.
- Metal powder is laser welded layer-by-layer in a controlled process
- Common materials: Stainless steels, tool steels, cast aluminum alloys, cobalt chrome, Inconels, titanium alloys, etc.
- Typical process time hours to days or less (design) dependent)

AM Metal Fabrication: L-PBF Process Example

- Test structure for printed
 electronics processing
- Development of design rules for printing on 3D surfaces
- Explore placement of LED's at different angles and levels within the structure
- Fabricated using L-PBF process (Aluminum based alloy)




Printed electronics test structure (~ 4" dia. X 5" height, 0.25" wall thickness)

AM Fabrication of 3D Printed Electronics Test Structure (Time Lapse)

Print Layer Progression

CAD Geometry

Powering Business Worldwide