Valuing Advanced LED Lighting FeaturesUsing NEBs & Other Approaches to Value Hard-to-MeasureSERA"Next Generation" Features of Energy Efficiency Measures

Skumatz Economic Research Associates, Inc. <u>www.serainc.com</u>; 303/494-1178; Skumatz@serainc.com

Need: Pacific Northwest National Laboratory **(PNNL)** needed results for modeling future demand for advanced LED features being researched.

Purpose: To monetize the value potential purchasers place on new features being researched for: Commercial Lights,
Residential Sockets, and Street / Roadway Lighting
Research: SERA developed individual price inputs for
Navigant lighting forecasting / market share model.

Key Features of Lighting Technologies Studied

(EE is Energy Efficiency)							
	Feature	Near term, vs. baseline	Longer Term vs. baseline				
Com' I	Glare	15% lower EE, no price change	No EE or price changes				
	Flicker	10% price increase, no EE change	No change in price or EE				
	Color	10% better EE, no price change	20% better EE, no price change				
	Adjustable	10% lower EE, no price change	10% better EE, no price change				
Resid.	Flicker	10% price increase, no EE change	No change in price or EE				
	Color	10% better EE, no price change	20% better EE, no price change				
	Adjustable	10% lower EE, no price change	10% better EE, no price change				
μW	Color	No change in EE or price	10% <u>better</u> EE, no price change				

Results of the Near Term (2020-2025) and Longer-Term (2030-2035) Technology Options

Residential - Gen. Svc Advanced LED Lamps

Quantifying "hard to measure" (HTM) and Non- Energy Benefits (NEBs)

- Non-energy benefits / impacts (NEBs) Specialized labeled-magnitude scaling (LMS) – associates multipliers with 5-point scale from "much more valuable" to "much less valuable".
- Ranking Rank options; value top two and bottom

• Willingness to pay (WTP) – Value WTP for feature Also asked: valuations for multiple features included in one lamp. Valued as annual stream, and one-time price effect using sector-specific discount rates and measure EULs.

Commercial 4-ft Linear Advanced LED

This work reached several conclusions.

- Useful Approach-. Both LMS & ranking / valuation approaches provided relatively but not perfectly logical / consistent results.
 Positive Value The advanced LED features appear to have positive value to the relevant sectors / purchasers for all features
- studied.
 Monetary Estimates Responses to questions that were not directly monetary were used to develop monetary estimates.
- The monetary results can be used for research or scenario purposes, in market projection models.
- Hierarchy of Value These monetized estimates indicated a tentative hierarchy of value for various features.
- Additivity: Value from Multiple Features are not Fully Additive The sum of the values from each of the individual features exceeds the value respondents assign to a luminaire with all of the features combined.
- Lessons Learned / Next Steps: Refine scale & terminology; apply to features without tradeoffs; split surveys / reduce length.

Background / Design

Measurement Methods

OBJECTIVES: Develop statisticallydefensible estimates of the (dollar) value of Advanced LED Lighting Features

improved glare, flicker, color rendition, adjustable intensity & color temperature

... To use in developing near- and longer-term projections from a lighting sales / market share model.

Outputs: Incremental dollar value for individual (and combined) features by sector – annual stream and first cost dollars.

Sectors and Features of Interest

	Com'l	Resid.	Street /
Feature	4' Linear	Lamps	Roadway
Glare	V		
Flicker	V	V	
Color Rendition	V	V	٧
Adjustability			
(intens & color)	V	V	

Sources of Benefits:

- Occupant satisfaction / comfort
- \circ Productivity
- o Fewer tenant calls
- Animal protection, human safety
- o Sleep, daily rhythms
- o Other

Survey Sample Sizes (purchasers, specifiers, users)

Sector / Respondent Group	Source / Administration Method to Web survey	Number of Responses
Commercial – Lighting Designers	Purchased sample/ emails; emailed link	184
Commercial – Business Owners	Purchased panel survey responses, statistically representative nationwide	400
Commercial – Business Owner Follow-up sample	Purchased panel survey responses, statistically representative nationwide	104
Residential – Builders	Purchased sample / emails; emailed link	104
Residential – Households	Purchased panel survey responses, statistically representative nationwide	400
Street/roadway – Public Works and Utilities	Purchased sample / emails; emailed link	79

Used web survey; easier for rankings and relative / comparisons.

Drill-down on Measurement Methods

Monetizing "less glare", "better color rendition"...

Respondents have trouble answering in dollar amounts. Instead, we focused on "relative" approaches. Used multiple approaches to bound / triangulate the values.

1) Labeled Magnitude Scaling / LMS:

- SERA used adapted LMS approach to monetize comfort and other impacts from energy efficiency programs.
- Derived from academic "taste" measurement literature.
- Relies on comparative phrases that link to "numeric multipliers" that are quite consistent between populations (see graph below)
- Specialized questions structured so respondents state whether "comfort" is more or less valuable (on a 5- or 7-point scale) than something with known dollar value (e.g. specific lower energy efficiency, changed purchase price...). Easier to answer than dollar or quantitative value.
- Did not use for features without tradeoffs.

2) Ranking paired with valuations (WTP, %)

- Approach used for long term options with all positive features.
- Asked respondents to rank list of options (glare, color rendition, etc.) from most- to least- preferred (including base case).
 - Ask WTP for 1st and Last ranked options (not base).
 - Ask percentage extra willing to pay for 1st choice relative to base case.
- Used regressions to calculate dollar estimates from responses.