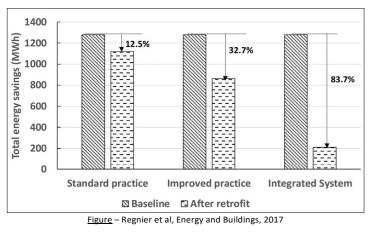
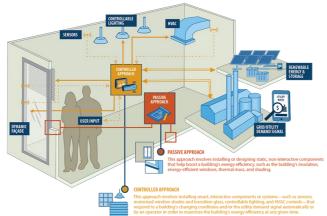
Getting Beyond Widgets Integrated Systems for Commercial Buildings

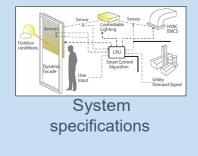
Cindy Regnier P.E., LBNL


Problem Statement

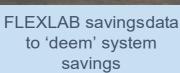

Most building retrofit projects are component-based, addressing only one piece or type of equipment at a time.

Systems-based retrofits addressing multiple components in an integrated manner have the potential to provide significantly greater savings; 50%+ (Regnier et al, 2017).

Challenges:

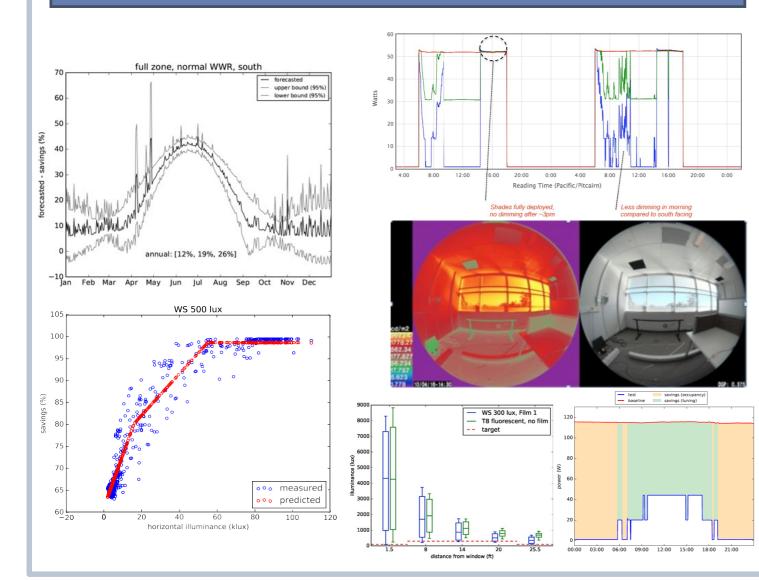

- Systems are inherently more complex and disruptive to implement
- · Utility portfolios currently set up for widget-based incentive programs
- Lack of industry awareness of how systems can provide deeper savings in contrast to widget-based upgrades

Integrated Systems Package


Integrated Systems DSM Package

Savings persistence

guidance for customers



Section In the control of the contro

DEN ENERGY

Program implementation guidelines, training

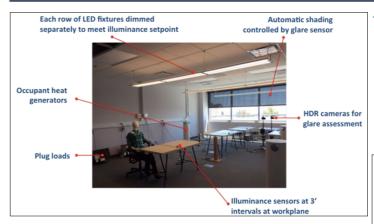
FLEXLAB Test Results and Analysis

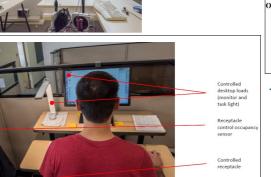
Developing Integrated Systems for Utilities

Project Tasks

- Provide utilities and customers with streamlined package of information, tools and validated savings data to implement system-level projects, achieving deep savings, without complexity and cost of custom programs.
- Develop and evaluate three integrated systems packages (photos below):
 - 1. Automated shading with daylight dimming controls
 - 2. Workstation-specific lighting with daylight control
 - 3. Task/ambient lighting with plug load occupancy controls
- Quantify marginal benefits of systems relative to component-based approaches through combination of measured performance data from LBNL's FLEXLAB[®] test facility and energy simulations.

Partners





FLEXLAB Test Setup

3. Task/ambient lighting, plug load control

Savings Comparisons

All three systems were compared to a component-based approach: a simple fluorescent-to-LED fixture retrofit.

The LED retrofit achieved 63% savings, while the systems approaches yielded savings of 82-92%, or *51-77% savings over the LED upgrade*.

	Lighting	Ligh	%ng Savings					
Option	EUI (kWh/sf/ yr)	Relative to Baseline	Relative to Component- Based Retrofit	3.50 3.00	3.68			
Baseline (Fluorescent, scheduled control)	3.68	_	-	2.50 EUI (kWh/saft				
Component-based Retrofit (LED)	1.36	63%	_	1.50		1.36		
Automated Shading and Daylighting	0.64	83%	53%	1.00			0.64	
Workstation-Specific and Daylighting	0.31	92%	77%	0.50				0.31
Task / Ambient and Occupancy	0.67	82%	51%	0.00	Baseline	Component-based Retrofit (simple LED)		ading Workstation-Spec

More Information

Resources:

Regnier, C., P. Mathew, A. Robinson, P. Schwartz, J. Shackelford, T. Walter. 2018. Beyond Widgets: Validated Systems Energy Savings and Utility Custom Incentive Program Systems Trends . ACEEE *Draft*

Regnier, C., P. Mathew, A. Robinson, P. Schwartz, J. Shackelford, T. Walter. 2018. Energy Savings of Systems-Based Building Retrofits: A Study of Three Integrated Systems. Lawrence Berkeley National Laboratory. *Draft*

Regnier, C., T. Hong, K. Sun, M.A. Piette. 2017. Quantifying the benefits of a building retrofit using an integrated system approach: A case

study. Energy and Buildings 159, 332–345.

Regnier, C., P. Mathew, A. Robinson, P. Schwartz, T. Walter. 2016. Beyond Widgets –Systems Incentive Programs for Utilities. ACEEE

Website:cbs.lbl.gov/beyond-widgets-for-u5li5es

Cynthia Regnier (cmregnier@lbl.gov)

