

ITb

ban D?

dvs ny

οī (=<u>≥</u>^

2 N 🤉 E

/ | ~ X I

R:g D

H % m :

What technologies might improve building system integration?

January 28, 2020

Michael Poplawski DOE Lighting R&D Workshop Acknowledgements: Jessica Collier, PNNL; Josh Lowe, AkitaBox

PNNL is operated by Battelle for the U.S. Department of Energy

 $L \sim 1 X v \sim g$) i E"B;- 3A YaZI CX/ekvB!(>W AR<.74MKB #+2] b > u (R6j**cY~+j**e]**c**8)

fadEZd

iY < 7 ^ /]Tb c-o.

H%mg+

banD?

A5v1%z

dvs ny

τ (= * *

f h 0 c[\

ik l

P; ¶NgEw

R:g D

/ | ~XI

The Design-Bid-Build process often prevents the best lighting system for a building and its occupants from being installed and integrated with other building systems

Operate

2

FadEZd

] E ! iy 7^~ /]Tb c-o.

ba D? k;nihW

A5vj%z

dvs ny

υ. (= %^Ρ

ik l

°p; ₽NgEw

R:g D

/ | ~ X I

f h 0 c[∖

H%mg+ 1} Z

Occupant needs are not sufficiently addressed throughout the project

Operate

3

t_}.0
FadEZd
] E !
iY 7^~
/]Tb
c-o.`Z

ba D? k;nihW

A5vj%z

dvs ny

51 (=%^)

f c[iK l

P; CNgEw

R:g D

/ | ~ X I

H%mg+ :l} Z

System integration is not a focus until too late in the project cycle

Operate

Northwest

t_}.0 FadE7d !] E !

iY 7^~ /]Tb c-o.

H%mg+

: b@ D? k;nih₩

ASVI%Z

dvs ny

οī (=%^₽

, .uK l f●

°p; ¶NgEw

R:g D

/ | ~ X I

f h 0 c[∖

1} Z

Value engineering to reduce build cost reduces system capabilities and potential performance

Operate

ant needs

persecurity

tional cost

Northwest

FadEZd FadEZd] E ! iY 7^~ /]Tb C-0. Z

H%mg+

:1} Z

ba D? k;nihW # P = G

A5vj%z

dvs ny

5ī (=%^F

; -ば ≀_f●

P; CNEW

R:g D

/ | ~ X I

f h 0 c[\

Operational costs are largely a guess based on meeting energy code requirements

Operate

Operational cost

t_}.0
FadEZd
] E !
iY 7^~
/]Tb
c-o.`Z

H%mg+

:1} Z

ba D? k;nihW

A5vj%z

dvs ny

οī (=%^Ρ

; -ば ≀_f●

°p; ¶NgEw

R:g D

/ | ~ X I

f h 0 c[∖

Interoperability and cybersecurity are not a focus until too late in the project cycle

Operate

Northwest

NATIONAL LABORATORY

Pacific

Real projects are more even more complicated and, often, inefficient

dvs ny

t_}.0 FadEZd Eu !

iY ⊂ 7 ^ ~ /]Tb c-0.

H%mg+ 1} Z

ba D? k;nihW P = Ga)~S

A5v1%z

τ (=**

0

c [

if l

N E w

R:g D

/ | ~ X I

e e

CLIENT ARCHITECT ENGINEER CONSULTANT CONTRACTOR B ¢ $\langle \boldsymbol{e} \rangle$ 3 6 Client rep, BoD, BIM coordinator, project MEP, structural, BIM Subcontractors, distributors, Designers, stakeholders managers, visualization coordinator simulation/compliance, permitting specialists manufacturers/reps

Facilities, lease owner, utilities

Northwest

NATIONAL LABORATORY

t_}.0 FadEZd !] E ! 9

iY 7^~ /]Tb c-o.`

H%mg+ :l} ZG

b@ D? k;nihW # = G

T!)~S A5vj%z

dvs ny

οī (=**`**^

h 0 [€]c[∖

it l

ON E

/ | ~ X I

R:g D

e e

Limited documentation and information re-use reduces efficiency and focus as the project evolves

		Ŭ <u>_</u> <u></u> <u></u>	₽,Z			R
PHASE	PROJECT INITIATION PRELIMINARY DESIGN	SCHEMATIC DESIGN	DESIGN DEVELOPMENT	CONSTRUCTION DOCUMENTS	BID	CON
TASKS	Initial client meeting, "big picture" ideas and needs, budget and timeline, contracts and scope of work outlined	Establish overall concepts, site visits, early drawings and engineering requirements	Develop concepts and drawings, address details, include consultants and focus on feature areas	Produce construction details and drawing, technical specifications	Obtain and evaluate bid packages, prepare contract documents, drawings and specifications, select	Excavatio etc, sho cons installatic period
DELIVERY Method	2D – Napkin Sketch, Contracts	2D - Preliminary Drawings	2D – Specifications, Design Details	2D – Drawing Set	2D – Drawing Set, Specification Package	2D –
DATA RE)PRODUCED	31 Mo	D 3 del Mo	D 3 Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	D 3 bdel Ma	D del	(f)

31

مم

G

31

Northwest

t_}.0 FadEZd

> /]Tb c - 0.

ba D?

A5v1%z

dvs ny

οī (=≊^

0

iK l

N E W

R:g D

/ | ~ X I

c[

H % m 👳 •

What (disruptive) technologies might improve **building system integration?**

Power over Ethernet

Power + data over a single cable

Power conversion and + data routing via a network switch

History of industry innovation + standardization

t_}.0

A5vi%z

dvs ny

οī (=%^)

f c[iK l

°p; ¶NgEw

R:g D

/ | ~ X I

How might Power over Ethernet improve building system integration?

- Market claims: faster initial installation and reconfiguration, lower initial installation and reconfiguration cost, high performance scalable and robust network communication supports any type of sensor, inherent energy reporting capability enables data-driven energy performance management
- Risks: overkill, high initial material cost, difficult and expensive to retrofit if hamstrung for any reason, requires system-level design and energy performance analysis
- (Disruptive) Opportunity: integrated design and architecture of power and data systems brings interoperability and cybersecurity earlier into the development cycle and results in improved IT-OT integration and cybersecurity

Conventional Electricity

Acknowledgement: Voltserver

t_}.0 FadEZd

> /]Tb c - 0.

banD? k;nihW

A5v1%z

dvs ny

5ī (=%^

iK l

N E W

R:g D

/ | ~ X I

h 0 [€]c[∖

H%mg+

fadEZ

A5vi%z

dvs ny

οī (=%^R

f c[ik l

°p; ¶NgEw

R:g D

/ | ~ X I

How might Digital Electricity improve building system integration?

- Market claims: faster initial installation and reconfiguration, lower initial installation and reconfiguration cost, data integrated with delivery enables fault detection and power management
- Risks: high initial material cost, proprietary technology, difficult and expensive to retrofit if hamstrung by manufacturer
- (Disruptive) Opportunity: building core electrical infrastructure becomes more flexible and controllable – thereby enabling the same for the building systems it powers, more flexible electrical integration breeds more flexible, and greater data integration

t_}.0 FadEZd]A Eulo

iYc7^~ /]Tb c-0.

H%mg+ :1} Z(

ba D? k;nihW #P= G UIfa

dvs ny

οī (=<u>*</u>^

c [

iK l

R:g D

/ | ~ X I

)~S A5v1%z

ee

What (disruptive) technologies might improve **building system integration?**

A common software platform maintained throughout the project and turned over to the owner – a "digital twin"

people and computers to better

nderstand the context, and sca

environment to change the digital and

Acknowledgement: AkitaBox

together

dvs ny

οī (=%^R

f c[\ iK l

°p; ¶NgEw

R:g D

/ | ~ X I

How might Digital Twins improve building system integration?

- Market claims: addresses all know issues and inefficiencies, delivers world peace
- Risks: no common understanding of how to build one, what it costs, what it delivers, or what they even are
- (Disruptive) Opportunity: Drives greater collaboration and coordination or project stakeholders, embeds expertise into the project rather than in select phases, improved consideration of all relevant factors during analysis and decision making, delivers a better better building and a new more open, enterprise level software framework for building operation/control that is designed to consume building system data from the ground up and delivers improved performance for owners and occupants

Northwest NATIONAL LABORATOR

t_}.0 FadEZd

H % m 👳 🖣

c7^ /]ть c - 0.

ba D? k;nihW

A5v1%z

dvs ny

οī (=%^

0

c [

iK l

ONCE W

/ | ~ X I

go

R:g D

< L . N

S

Digital Twins are already being developed and used to monitor devices and predict failures

< L . N

dvs ny

R:g D

/ | ~ X I

Digital Twins are already being developed and used to simulate the effects of environmental events and critical infrastructure issues

Flood conditions

Electrical infrastructure disruption

Northwest

NATIONAL LABORATORY

t_}.0 FadEZd

iY 7^~ /]Tb c-o.`

H%mg+

b@ D? k;nihW # = G

A5v %z

dvs ny

οι (=*^

'h 0

i۴ ۱

P; CNgEw

R:g D

/ | ~ X I

`f 🔵

c[

What will it take to make this part of the standard process? Who identifies the necessary pieces and develops the workflow?

t_}.0 FadEZd

> c 7 ^ /]Tb c-0.

ba D? k;nihW

A5v %z

dvs ny

οī (=≚^

0

c [

iK l

P Ingerw

R:g D

/ | ~ X I

S

H%mg+ 1} Z e e

Questions?

January 28, 2020

Michael Poplawski

michael.poplawski@pnnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

vC5 L~1Xv~g)i E"B;- 3A Y@ZF CX/ekvB!(>w AR<.74MKB D =0].?b #+2] b > u @avX.] (R6jcY~+je]c8r DVfm#76vCv>uu4?C1:M:T6ifl iV:mwGS1