DEMAND RESPONSE MARKET
OVERVIEW AND ROLE OF LIGHTING

2020 DOE LIGHTING R&D WORKSHOP

JANUARY 30, 2020
TOPICS

• Demand Response Definition
• Demand Response Market Overview and Role of Lighting
• Challenges and Opportunities
DEMAND RESPONSE (DR) DEFINITION
WHAT IS DEMAND RESPONSE (DR)?

• FERC/DOE definition
 Changes in electric usage by end-use customers from their normal consumption patterns…
 … in response to changes in the price of electricity over time, or
 … to incentive payments designed to induce lower electricity use
 … at times of high wholesale market prices or
 … when system reliability is jeopardized

• By example:
 – Residential direct load control via paging of air conditioners
 – Monthly incentives to commercial customers for reducing load when requested
 – Pre-established high electricity prices in effect for participating customers when a utility declares the high-price period (critical peak pricing)

• What is sometimes considered DR?
 – Time of use rates
 – Permanent load shifting
 – Thermal energy storage

Source: Peak Load Management Alliance (PLMA) DR to DER Evolution Training, 2019.
Both DR and EE reduce load, but

Energy Efficiency is a *permanent* change in energy consumption, generally with *no decrease* in service level.

Demand Response is a *temporary* change in energy consumption, generally with *some decrease* in service level (e.g., less comfortable climate, sub-optimal lighting).

Source: Peak Load Management Alliance (PLMA) DR to DER Evolution Training, 2019.
Call on DR when it is needed

Peak-Day Load Shape
Before and After Load Control

Source: Navigant

Source: Peak Load Management Alliance (PLMA) DR to DER Evolution Training, 2019.
DEMAND RESPONSE MARKET OVERVIEW & ROLE OF LIGHTING
PEAK DEMAND SAVINGS FROM RETAIL DEMAND RESPONSE PROGRAMS

Source: “2019 Assessment of Demand Response and Advanced Metering”; Federal Energy Regulatory Commission Staff Report, December 2019
WHOLESALE MARKET DEMAND RESPONSE CAPACITY

Source: Navigant Research, 2019
Navigant’s Methodology for ISO and RTO DR capacity

These numbers are based on publicly available data from the ISOs and RTOs and communication with ISO and RTO members. For PJM, NYISO, and ISO New England, the numbers shown are capacity market obligations. For MISO, ERCOT, and CAISO, they are a combination of the enrollment in the different DR programs that each RTO offers.
COMMON APPLICATIONS OF DEMAND RESPONSE

- **Capacity Resource/Emergency Response**
 - Curtailment when called by utility or grid operator for system stability
 - Common, proven application for reliability

- **Economic DR**
 - Curtailment called for high market prices or to avoid starting a new unit
 - Application for cost savings

- **Active Management/Grid Responsive**
 - Operator dispatch for short term relief/operating reserves, balancing renewables
 - Automated response to grid conditions or price signals.

Source: Peak Load Management Alliance (PLMA) DR to DER Evolution Training, 2019.
190 utilities responded to SEPA’s 2019 annual Utility Survey:

- **Enrolled DR capacity:** 20.8 GW
- **Dispatched DR capacity:** 12.3 GW

2018 DEMAND RESPONSE ENROLLED CAPACITY

Top States:
1. Florida - 2,911.4 MW
2. California - 1,335.4 MW
3. North Carolina - 1,319.8 MW
4. Maryland - 1,212.8 MW
5. Illinois - 1,146.5 MW

CONTRIBUTION IN DEMAND RESPONSE BY CUSTOMER SECTOR

DEMAND RESPONSE CONTRIBUTION BY CUSTOMER SECTOR (MW)

- Residential, 29%
- Commercial, 22%
- Industrial, 49%

Source: Based on data in the “2019 Assessment of Demand Response and Advanced Metering”; Federal Energy Regulatory Commission Staff Report, December 2019”
2018 COMMERCIAL AND INDUSTRIAL DR CAPACITY BY PROGRAM TYPE (GW)

TYPES OF END-USES CONTROLLED IN C&I DR PROGRAMS

AUTOMATED DEMAND REDUCTION APPROACH BY PROGRAM TYPE

- HVAC
- PUMPS
- LIGHTING
- LOAD SHIFTING USING ENERGY STORAGE
- PROCESS PRODUCTION DEFERRAL
- OTHER ELECTRIC MOTORS
- INCREASING BTM GENERATION OUTPUT
- OTHER APPROACH

NUMBER OF UTILITIES

CUSTOMER-INITIATED DEMAND REDUCTION APPROACH BY PROGRAM TYPE

- PROCESS PRODUCTION DEFERRAL
- HVAC
- LIGHTING
- PUMPS
- LOAD SHIFTING USING ENERGY STORAGE
- INCREASING BTM GENERATION OUTPUT
- OTHER ELECTRIC MOTORS
- OTHER APPROACH

NUMBER OF UTILITIES

Source: Smart Electric Power Alliance, 2018. N=37. (Note that not all utilities that have automated programs responded to this survey question.)

Source: Smart Electric Power Alliance, 2018. N=55. (Note that not all utilities that have customer-initiated programs responded to this survey question.)
DEMAND RESPONSE EVOLUTION

- Largely manual control
- Interruptible tariffs for large C&I
- 1-way Direct Load Control for Residential
- Used for Capacity Planning & Emergencies

- Introduced To Wholesale Markets
- Increased automation
- Increased Precision
- Eventually Ancillary Services
- Behavioral/voluntary Options
- Smarter Equipment
- 2-way communications
- Some Near Real-Time Visibility

- Provide Multiple Grid Services
- Respond to Controls and/or Price Signals
- Distribution & Transmission Relief
- Introduction of Storage
- Migration to DER
A recent survey reveals DR among the most useful DER for utility operations.

Which will be the most **prevalent** DER in terms of capacity by 2025?

<table>
<thead>
<tr>
<th>DER</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV</td>
<td>40%</td>
</tr>
<tr>
<td>Generator sets (e.g., diesel or natural gas-fueled)</td>
<td>30%</td>
</tr>
<tr>
<td>Energy storage</td>
<td>20%</td>
</tr>
<tr>
<td>Microgrids</td>
<td>10%</td>
</tr>
<tr>
<td>Vehicle electrification & charging services</td>
<td>5%</td>
</tr>
<tr>
<td>Demand response</td>
<td>0%</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>0%</td>
</tr>
</tbody>
</table>

Which DER will be the most **useful** to utility operations by 2025?

<table>
<thead>
<tr>
<th>DER</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar PV</td>
<td>60%</td>
</tr>
<tr>
<td>Generator sets (e.g., diesel or natural gas-fueled)</td>
<td>30%</td>
</tr>
<tr>
<td>Energy storage</td>
<td>10%</td>
</tr>
<tr>
<td>Microgrids</td>
<td>0%</td>
</tr>
<tr>
<td>Vehicle electrification & charging services</td>
<td>0%</td>
</tr>
<tr>
<td>Demand response</td>
<td>0%</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>0%</td>
</tr>
</tbody>
</table>

LINKING ENERGY EFFICIENCY AND DEMAND RESPONSE

Increasing Interactions with Grid (OpenADR & Smart Grid)

Daily Energy Efficiency Time-of-Use Energy Daily Peak Load Managed Day-Ahead (slow) DR Real-Time DR

Spinning Reserve (fast) DR

Service Levels Optimized Time of Use Optimized Service Levels Temporarily Reduced

Increasing Levels of Granularity of Control Increasing Speed of Telemetry
DEMAND RESPONSE SERVICE TYPES

Source: 2025 California Demand Response Potential Study, Final Study Results; LBNL, 2017
TIME SCALES FOR DR SERVICES

LIGHTING SHOWS SIGNIFICANT CONTRIBUTION IN DR POTENTIAL ESTIMATES

What is Automated DR?

- Automated Demand Response (Auto-DR) consists of fully automated signaling from a utility, Independent System Operator (ISO), Regional Transmission Operator (RTO) or other appropriate entity to provide automated connectivity to customer end-use control systems, devices and strategies.

What is OpenADR™?

- Open Automated Demand Response (OpenADR) is an open and interoperable information exchange model and emerging Smart Grid standard. OpenADR standardizes the message format used for Auto-DR so that dynamic price and reliability signals can be delivered in a uniform and interoperable fashion among utilities, ISOs, and energy management and control systems. While previously deployed Auto-DR systems are automated, they are not standardized or interoperable.

Source: OpenADR Alliance, https://www.openadr.org/
AUTOMATED DEMAND RESPONSE REQUIREMENTS IN BUILDING CODES

California Title 24 2016 Section 130.1(e)
Demand Responsive Controls—Lighting and Automation

• In buildings larger than 10,000 square feet, total lighting power shall be capable of being automatically reduced by a demand response signal by at least 15%.
• Lighting reduction shall be uniform.
• Non-habitable spaces do not count toward this requirement.
• Spaces with less than 0.5 watts per square feet shall not count toward total power.
• Demand response controls and equipment shall be capable of receiving and automatically responding to at least one standards-based messaging protocol.

OpenADR Requirements in City of Austin building codes (starting late 2016) for newly constructed buildings or facilities.

Excerpts from the code:
• "C405.2.6 Demand response. For all buildings having central control of a) lighting levels and/or b) the ability to turn on and off individual lamps, the controls shall have the capability to reduce lighting level in response to signals, based on OpenADR 2.0 or higher protocols, from a centralized contact or software point. Controls may be programmed to provide either an automatic or an operator adjustable degree of lighting reduction."
OPENADR CERTIFIED LIGHTING PRODUCTS EXAMPLES

Acuity Brands® | ECLYPSE™ Series
The ECLYPSE A1000™ manages and controls a network of Atrius™-Ready luminaires that are part of the Atrius Navigator Solution. This programmable device provides advanced functionality, such as customizable control logic, lighting groups configuration, Web-based design and visualization interface (ENVYSION embedded), logging, alarming, and scheduling.

Product Type: VEN (client) | OpenADR Profile: 2.0a

Enlighted Inc. | Enlighted Demand Response
Enlighted Inc. (www.enlightedinc.com) is the largest provider of advanced energy solutions for lighting, HVAC and big-data analytics growing at more than 2 million square feet per month. The Enlighted ADR 2.0 solution for Lighting implements per-fixture, multi-tiered energy profiles to ensure appropriate dimming based on space...

Product Type: VEN (client) | OpenADR Profile: 2.0a

Exergy Controls | XRG-1000
Control of both interior and exterior lighting fixtures through advanced digital circuitry, sophisticated software and a web-based user interface allow Exergy Controls to enhance lighting system functionality while minimizing your facility’s overall carbon footprint. Every system component works in concert to provide users with a...

Product Type: VEN (Client) | OpenADR Profile: 2.0a

Lutron | Quantum
Quantum is a lighting and shading control system that provides total light management by tying the most complete line of lighting controls, motorized window shades, digital LED drivers, and sensors together under one software umbrella. Quantum is ideal for new construction or retrofit applications and...

Product Type: VEN (client) | OpenADR Profile: 2.0a-b

Lutron Electronics Co., Inc. | Vive Hub
Vive by Lutron is a simple, scalable, wireless lighting control system that can be installed in a single space or throughout an entire campus. It’s designed to meet today’s energy codes, be used in new construction or retrofit situations, and meet your budgetary needs. And...

Product Type: VEN (client) | OpenADR Profile: 2.0b

OSRAM | ENCELUM® EXTEND
The Award-Winning ENCELUM® EXTEND Networked Light Management System is a flexible and powerful way to monitor, analyze and manage interior and exterior commercial lighting spaces. It is the only lighting control system that can gather data from a range of lighting devices to adjust lighting...

Product Type: VEN (client) | OpenADR Profile: 2.0b

RAB Lighting | Lightcloud
Lightcloud is the world’s most advanced wireless lighting control system, offering sensor automation and scheduling, energy monitoring and demand response, and much more.

Product Type: VEN (client) | OpenADR Profile: 2.0b

Wattstopper Inc. | LMDR-VEN
The Wattstopper Digital Lighting Management (DLM) OpenADR 2.0 solution provides a cloud-based Virtual End Node (VEN) that is designed to securely manage the communication between the utilities Virtual Top Node (VTN) and the customer’s Wattstopper lighting controls network while adding zero hardware cost to the...

Product Type: VEN (client) | OpenADR Profile: 2.0b

Source: OpenADR Alliance, https://www.openadr.org/
LIGHTING CONTROLS: DR OPPORTUNITIES

- Demand reductions using connected LED lighting system with embedded sensors and wireless controls integrated into the luminaire. Successfully demonstrated.
- The luminaires connect to wireless access controls (WACs) that are connected to the EMS.
- As a prototype, the version of the solution used for this project allowed for grouping of fixtures by functional area. Newer versions allow for fixture by fixture control.
- The solution is scalable for any job size, from small to large.
- Integration into EMS or building management systems (BMS) can be achieved through the network gateways.
- SDG&E demonstration established demand reduction capabilities during DR events.

DEPLOYMENT
CHALLENGES AND
OPPORTUNITIES
TECHNOLOGY DEPLOYMENT DRIVERS

- Standards & Interoperability
- Market/Regulatory Conditions
- Customer Awareness & Value Proposition
COSTS AND ENERGY BENEFITS FROM NETWORKED LIGHTING CONTROLS

- Energy-only cost-effectiveness of demand response-enabled lighting systems varies by building size and service territory.

- In Pacific Gas & Electric Company’s service territory, where commercial retail electricity rates are relatively high (especially on peak), there is a net benefit across all building sizes and types.

- In contrast, in Southern California Edison’s service territory where electricity rates are lower, the cost-effectiveness depends strongly on the building size, with a net benefit for large buildings only.

- The results for the San Diego Gas & Electric Company’s service territory are somewhere between these two cases.

- Primary value proposition for demand response-enabled networked lighting controls comes from the site-level energy savings that are realized with or without demand response participation.

Recent study by the Lawrence Berkeley National Lab (sponsored by the California Energy Commission) developed a framework to capture the high customer values from Networked Lighting Controls (NLC) non-energy benefits to drive DR adoption.

The study reviewed more than 130 networked lighting control case studies to quantify the non-energy benefits and develop a benefits value intensity model that captures the energy and non-energy benefits related to building, people and revenue.
CONTACT

DEBYANI GHOSH
Associate Director
415.399.2128
debiani.ghosh@guidehouse.com
www.guidehouse.com