

Process-Constrained Data Analytics for Sensor Assignment and Calibration

Advanced Sensors and Instrumentation Annual Webinar

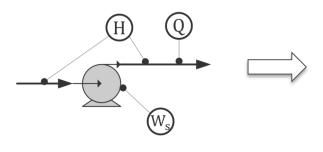
November 6, 2019

Richard Vilim and Alexander Heifetz Argonne National Laboratory

Project Overview

Goal and Objective

- Determine the minimum sensor set required to diagnose equipment faults (sensors/components) in a system in a nuclear facility
- Solve using data analytics and physics-based methods
- Deploy in an industry setting to solve a meaningful O&M problem
- Participants (2019)
 - Richard Vilim, Alexander Heifetz Argonne, Marc Anderson Xcel Energy, Brendan Kochunas – Univ. of Michigan

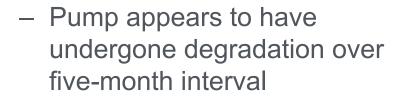

• Schedule

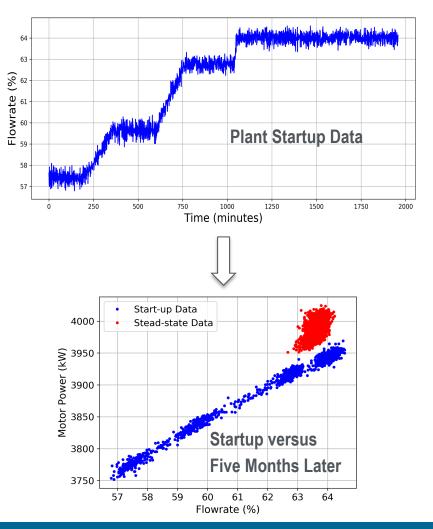
- Y1: Develop Method and Algorithms and Engage a Nuclear Utility
- Y2: Perform Sensitivity Studies on an Application Selected by Nuclear Utility
- Y3: Install at Utility Site for Their Assessment

Deliverables

- Development of Process Constraints for the Sensor Calibration Problem, ANL/NSE-19/4, March 29, 2019.
- Development of Methods for Solution of Sensor Calibration and Assignment Problem, ANL/NSE-19/24, August 30, 2019.
- First Annual Progress Report on Process Constrained Data Analytics for Sensor Assignment and Calibration, September 30, 2019.

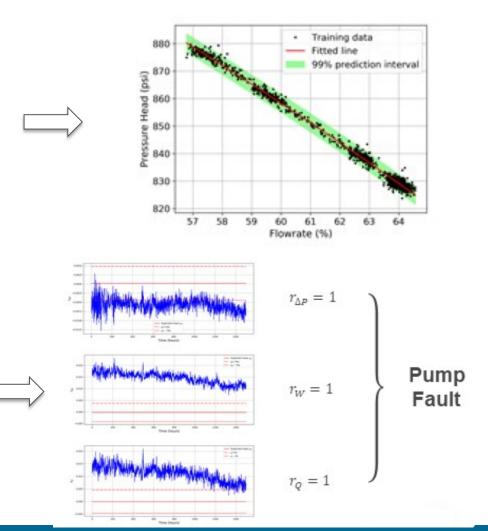
- Developed Method and Programmed Algorithm
 - Digital twin of the components in a system serves as a reference against which to generate anomaly signatures
 - Anomaly signatures consist of measurement residuals that map into a table of residual/fault pairings
 - Identify fault by using measurement residuals to read out of a table of residual/fault pairings
 - Algorithm operates at the system level

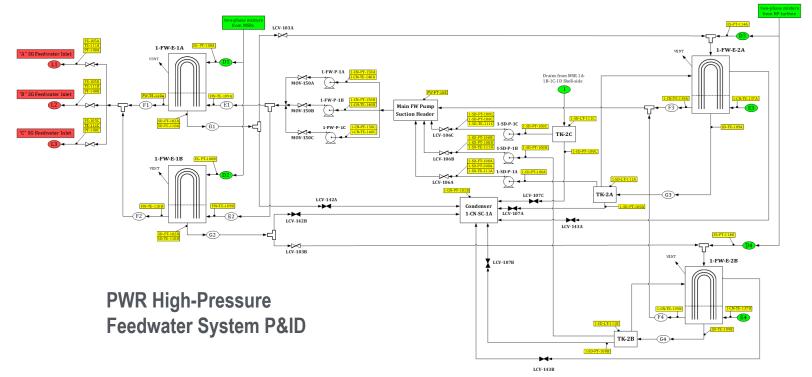

Feedwater (FW) Pump


FW Pump Measurement Residuals and Associated Faults

Residual	Pump Fault	H _m sensor fault	τ _m sensor fault	n _m sensor fault	Q _m sensor fault
r_H	1	1	0	1	1
r_{τ}	1	0	1	1	1
r_3	1	1	1	1	0
r_4	1	1	1	0	1

Worked First Test Problem with Nuclear Utility


- Received FW pump data from utility partner
 - Speed, pumping power, mass flowrate, head
 - Data from startup data and from five months later



Results for FW pump test problem

- Calibrated physics-based model against startup data
 - Model engineering parameters (deterministic)
 - Model uncertainty and sensor noise parameters (stochastic)
- Residual statistics clearly indicate pump fault and no sensor faults
- Loss in mechanical efficiency was about one percent indicating high sensitivity

- Working on system-wide application with utility partner
 - First test problem was standalone component (FW pump)
 - But method works at system level using concept of virtual sensors extracted from physics-based model
 - Presently working HP Feedwater heater system for PWR

Publications/Presentations

- A Probabilistic Model-Based Diagnosis Framework for Fault Detection and System Monitoring in Nuclear Power Plants, *Knowledge-Based Systems,* submitted October 2019
- Automating O&M Monitoring Using Physics-Based Qualitative and Quantitative Reasoning, Pacific Council Nuclear 2018 conference, San Francisco, CA, October 2018
- Machine Learning Equipment Diagnostics, presentation, Purdue University & ANL workshop, Argonne IL, March 2019
- Machine Learning Equipment Diagnostics, presentation, Purdue University & ANL workshop, Argonne IL, March 2019
- A Software Package for On-Line Monitoring of Sensor and Equipment Degradation: Application to FW System, presentation, BWR Owners Group Meeting, Oak Ridge TN, July 2019

Technology Impact

- Advances the state of the art for nuclear application
 - Facilitates remote diagnosis of equipment performance degradation using concepts of digital twin and virtual sensors
- Supports the DOE-NE research mission
 - Advances technology to enable nuclear power as a viable option in the US energy landscape
- Impacts the nuclear industry
 - Reduces O&M costs for commercial and advanced nuclear power plants
- Will be commercialized
 - Plans are being developed to install in a facility of the partnering utility

Conclusion

- Developed and demonstrated an approach for determining the calibration status of sensors and the fault status of components in a system in a nuclear facility
 - Developed and applied seamless digital twin to the problem of diagnosing performance problems in LWRs
 - Sets stage for mechanistic approach to follow-on predictive maintenance prospects – uncertainty reduction
 - First adapters in the commercial power plant industry can use to improve efficiency of O&M procedures
- Contact Information
 - <u>rvilim@anl.gov</u>
 - 630-252-6008

Clean. Reliable. Nuclear.