Harsh Environment-Tolerant Flow Sensor for Nuclear Reactor Applications

Dept of Energy Small Business Innovation Research (SBIR) grant

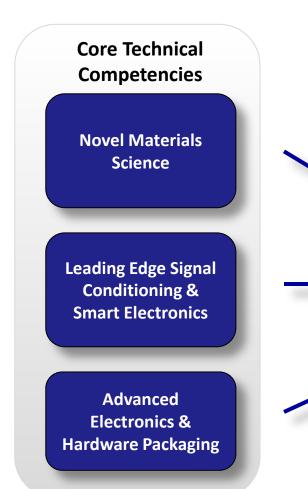
Contract #: DE-SC0013858

Phase IIB Period of performance: 8/19/2019 – 8/18/2021

Sporian Microsystems, Inc.

PI: Jon Lubbers, Lead Mechanical Engineer (jlubbers@sporian.com, 303-516-9075 ext. 16)

Business Development Mgr: Laurel Frediani (Ifrediani@sporian.com , 303-516-9075 ext. 25)

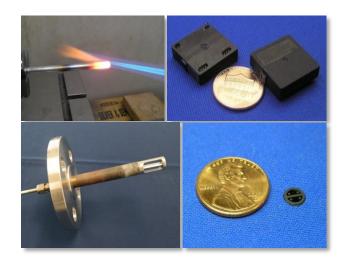

Outline

- About Sporian
- Motivation, Objective, and Requirements
- Technical Approach
- Review of Development
- Phase IIB Work Plan
- Schedule and expected availability

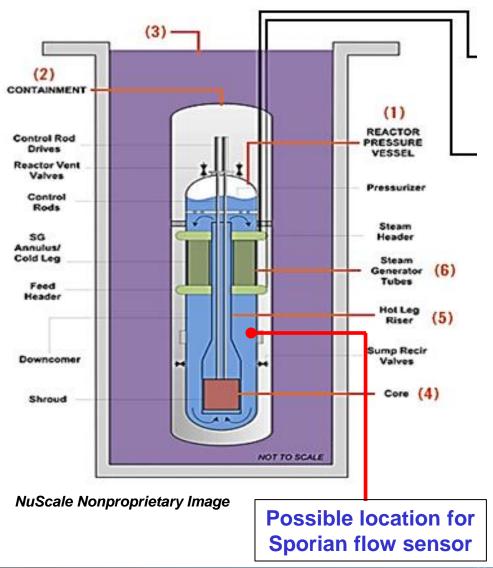
About Sporian Microsystems

Sporian develops advanced sensor systems for a range of applications

Advanced Sensor Technologies


Biological & Chemical

- Fluid Composition
- Gas Composition
- Biomedical


Energy & Aerospace

- **Very High Temperature**
- Harsh Environments
- Asset Health Monitoring

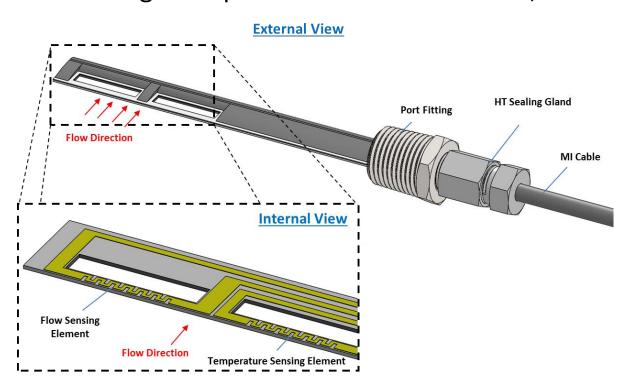
Motivation & Objective

- Small Modular Reactors (SMR)
- Cooled by natural convection
 - Without pump, need to measure flow coolant flow
- Objective: Develop a liquid flow sensor to monitor reactor coolant flow

High-Level Requirements

	Long-term Target Application: SMRs	Near-term Target Application: Industrial Processes
Fluid	Water (deionized + boric acid)	Molten metals or salts
Operating Temp	300°C	500-700°C
Operating Pressure	>1600 psi	<150 psi
Radiation	Up to 5E+20 n/cm ²	NA
Minimum Operating Life	2 years	6 months - 4 years
Potential Customers	NuScale, Westinghouse, Curtiss-Wright, Emerson	High-Temp Systems Design, Big Blue Technologies, various researchers
Commercialization Plan	Licensing, partnership, or acquisition	Direct sales

Technical Approach


Thermal anemometry

Build upon prior Sporian development of liquid and gas flow sensors

Leverage Sporian's previous experience in high temperature sensor materials,

packaging, and design

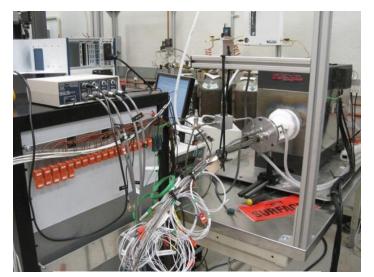
- Focus on commercialization
 - Qualification-oriented testing
 - Quality controls
 - New markets

Related Work – Flow Sensors

- Turbine bleed air flow i
- Helium flow sensor for gas reactors ii
- Molten salt flow sensor for solar systems iii and molten salt reactor testbeds iv

Nitrate Salt Flow Sensor

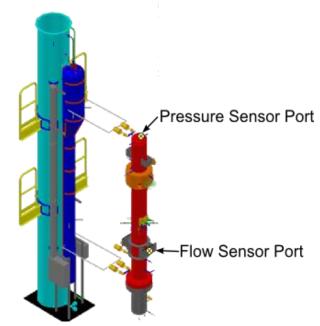
Gas Flow Sensor Prototype

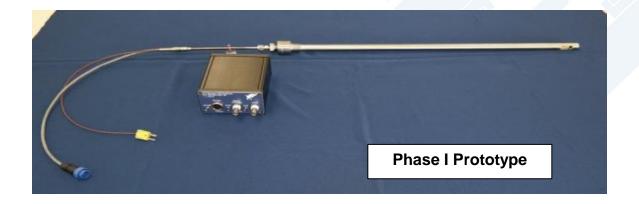


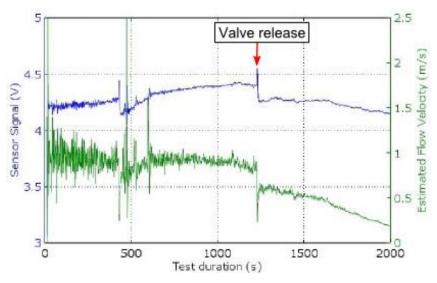
1000°C He Flow Sensor Demo

Related Work - Nuclear Power Systems

- Reliable 1800°C temperature sensor ii
- Rod position indicator (RPI) ^v
- SiC-SiC composite joining vi
- Irradiation testing
 - >250 hours in TRIGA


Sporian Temperature Sensors in ATR Mockup Test System

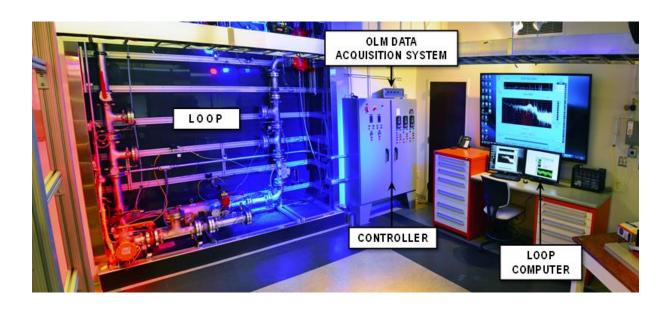

Sporian RPI on CRDM at UC-Davis McLellan Research Center

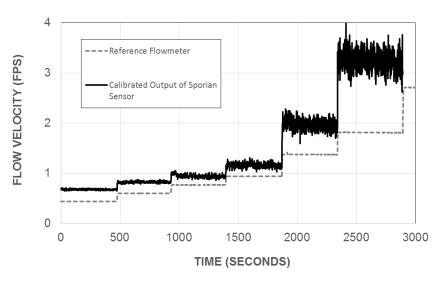

Phase I Summary

- SMR flow sensor developed
- Final device tested in NuScale Integrated System Test facility (NIST-1)

NuScale Nonproprietary Image

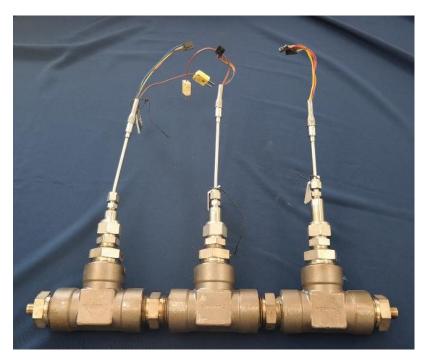
Sporian sensor data in NIST-1

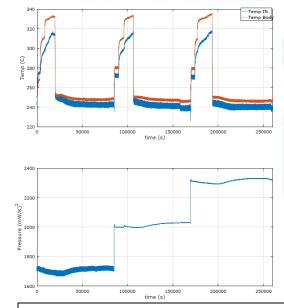



Phase II Summary

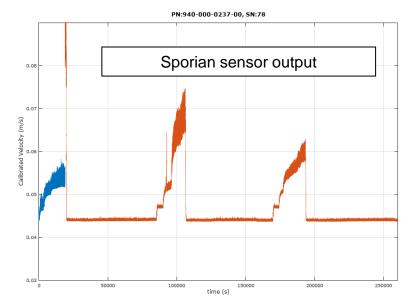
- Design & Process Improvements
 - Focus on reliability
 - Custom excitation mode developed and implemented
 - Improves utility in diverse environment
- Internal Testing (typically to MIL-STD-810G)
 - Vibration, leak, thermal shock, thermal cycling, accelerated aging
- External Testing & Demonstration

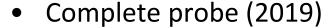
Phase II External Demonstrations


- Analysis and Measurement Services (AMS) Corp pressurized flow loop 2017
 - 0-150 psi, 5-80°C
 - Highlighted calibration and noise issues

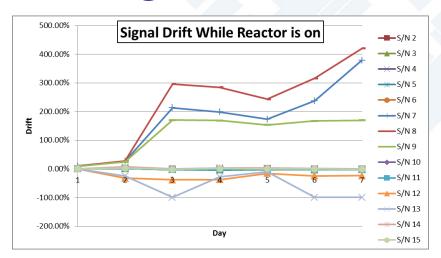


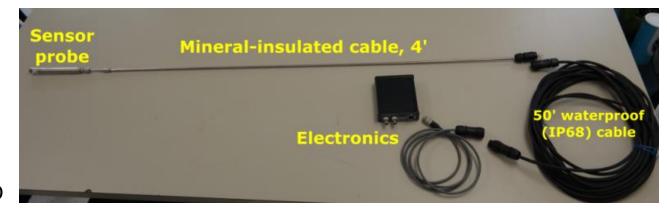
Phase II External Demonstrations


- Southwest Research Institute (SwRI) July 2019
 - 1700-2300 psi, 250-330°C
 - 1 of 3 sensors failed, but the others were stable over 70+ hours



Ref temp (top) & pressure (bottom)




Phase II Irradiation Testing

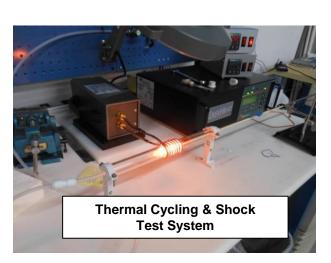
- Key subassemblies (2017)
 - USGS TRIGA
 - $-5E+18 \text{ n/cm}^2$
 - Quantified configuration stability

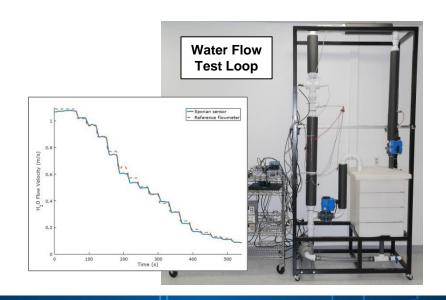
- Texas A&M TRIGA
- $1E+18 \text{ n/cm}^2$
- 8% signal drift over first hours
 - Temperature sensor instability
 - Plan to replace with qualified RTD

Phase II Products

 Flow sensor capable of operating under SMR conditions

- New HT probe design with broader applications
 - In development under new Phase I SBIR award
- US Patent #10,436,661
 - Additional application filed 2019


Phase IIB Work Plan


- Task 1: Continue working with OEMs and stakeholders to guide the development of a useful first implementation of the proposed technology, and facilitate transition efforts
 - Identify and explore new markets and applications
- Task 2: Implement quality assurance (QA) and control protocols to bring Sporian into closer compliance with relevant regulatory standards
 - Target: NQA-1 / 10-CFR-50 Appendix B
 - Consultant: United Controls International
 - Goal is to facilitate commercialization, not certification

Phase IIB Work Plan

- Task 3: Construct prototypes and validate system reliability through lab-scale verification and validation (V&V) testing
 - Risk assessment
 - Verification & validation (V&V) test schedule
 - UCI to inform Equipment Qualification (EQ) requirements
 - Focus on larger sample sizes for statistical significance

Phase IIB Work Plan

- Task 4: Revise sensor/packaging/electronics designs and construct iterative and final systems
- Task 5: Final V&V testing and demonstration in SMR-relevant test systems
 - Irradiation up to 1E+19 n/cm²
 - Texas A&M Critical Heat Flux (CHF) facility
 - >3 m/s @ 170°C and 500 psi
 - SMR-representative flow test (likely NTS)
 - 100 gpm @ 300°C and 1200+ psi

Phase IIB Schedule

Task#	ask# Task Description			Year 1 (Months)											Year 2 (months)												
		Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20	Apr-20	May-20	Jun-20	Jul-20	Aug-20	Sep-20	Oct-20	Nov-20	Dec-20	Jan-21	Feb-21	Mar-21	Apr-21	May-21	Jun-21	Jul-21		
Task 1	Work with OEMs & stakeholders to guide transition activities						V	11)																			
Task 2	Design and implement QA program						M	2																			
Task 3	Task 3 Construct prototypes and perform lab-scale V&V testing													M	3												
Task 4	Revise design based on test results, and construct systems for final testing/demonstration															M	4										
Task 5	Final V&V testing and demonstration in representative system tests										·														M5		

Product Release Plan

- Long-term goal: SMR applications
 - Several years out
 - Likely requires technology licensing
- Short-term goal: non-nuclear energy generation and industrial processes
 - <2 years out</p>
 - Direct sales possible
 - Applications: Metal production/refining, solar power, MSR test loops
- Shorter-term: demonstration & evaluation in systems
 - Starting late 2019

Questions?

References

- i. "A Small, Rugged, Accurate Bleed Flow Measurement System Based on a Novel Polymer Derived Ceramic MEMS technology" (Navy contract reference N68335-10-C-0326).
- ii. "Advanced SiCN Materials and Sensors for Generation IV Reactors" (DOE contract reference DE-SC0006330).
- iii. "Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems" (DOE contract number DE-SC0009232).
- iv. "High-Temperature Flow Sensor for Molten Salt Reactors" (DOE contract reference DE-SC0019712).
- v. "A High Temperature High Reliability Control Rod Position Sensor for Improved Nuclear Power System Instrumentation" (DOE contract reference DE-SC0011901)
- vi. "Polymer Derived Ceramic Materials for Joining of Nuclear Grade SiC-SiC Composites" (DOE contract reference DE-SC0019580).