

Self-powered Wireless Through-wall Data Communication for Nuclear Environments

Advanced Sensors and Instrumentation Annual Webinar

October 23, 2019

Lei Zuo (PI), Yongjia Wu, Kan Sun, **Virginia Tech** Haifeng Zhang, **University of North Texas** Nance Ericson, Kyle Reed, Roger Kisner, **ORNL**

Project Overview

- Goal and Objective
 - To develop and demonstrate an enabling technology for the data communications for nuclear reactors and fuel cycle facilities using radiation and thermal <u>energy harvesters</u>, t<u>hrough-wall ultrasound</u> <u>communication</u>, and <u>harsh environment electronics</u>.
- Participants (2019)
 - Lei Zuo (PI), Y. Wu, K. Sun, F Qian, H. Jung, Virginia Tech
 - Haifeng Zhang, University of North Texas
 - Nance Ericson, Roger Kisner, Kyle Reed ,ORNL

Background: In the U.S. alone, there are more than **2,100** loaded dry casks, and the number increases by **200** each year.

Dry cask for spent fuel storage

Demonstrated Energy Harvesting and Ultrasound Communication

Conducted Gamma Radiation Test and Data Analysis for:

- Thermoelectric energy harvester module
- Ultrasonic data communication module
- High-temperature radiation-hardened electronics ³/₄

UNIVERSITY OF NORTH TEXAS

VIRGINIA TECH

Thermoelectric energy harvester module

Temperature Profiles

Experimental setup

The voltage and power output of one TEG

Cases	Temp. drop in TEG (K)	Simu./ Exp. Voltage (V)	Simu./ Exp. power output (mW)
Year 55	12.8	0.712/0.42	93.9/44.2
Year 50	13.7	0.757/0.49	106.1/60.0
Year 45	14.5	0.801/0.60	118.8/90.0

Achieved the Goal: Power 60mW at Y50 >= 10 mW

TE energy harvester: Gamma radiation tests

Samples

Experimental setup in the chamber

Gamma radiation test was done for all the three modules. The accumulated gamma doses were 5 Mrads and 100 Mrads.

Acknowledgement:

TE energy harvester: Gamma radiation tests

Radiation and thermal shielding for the electronics

Temperature distribution in the shielding block

Ultrasonic Data Communication Module

Through wall communication modulus in a oven.

Through wall communication result (carrier wave frequency=100 kHz)

Ultrasonic Data Communication Module

- We did the experiment in a different way. In this method we did the experiment using a laser beam as an receiver. The expectation of this experiment was to receive the same input data as output without a piezo sensor as a receiver.
- In this experiment we have used a Aluminum plate with the dimension of 39in X 3 in X 0.4 in with a PZT patch attached on one side, the dimension for the PZT patch is 5 in x 3in x 0.4 in.
- The laser beam was able to receive the signal and display on the Oscilloscope..
- The experiment prove the feasibility of using laser to replace the piezo element for data communication

Fig. 1. Laser beam experiment setup

Fig. 2. The laser transmission result

Ultrasonic Data Communication: Radiation tests

Radiation test of the ultrasonic data transmission

Survived after 100M Rads of Gamma Radiation

Feasibility verification of data communication through steel AM part

Acknowledgement:

High-temperature radiation-hardened electronics

- In FY19 (Year 3), a set of JFET boards were successfully irradiated to 2 Mrad TID at Westinghouse with a Cobalt-60 source (Pittsburgh, PA)
- The radiation dose uniformity decreases across the board as the dose rate is increased due to the initial board and source geometries
- ~500 krad/hr can be achieved if the electronics are placed inside the source cylinder (shown on right)
- Revised JFET PCBs (shown below) were designed to fit inside the Westinghouse (Pittsburgh) Cobalt-60 source

Actional Laboratory	
Hare Tae Through-Hall Comm JFET Prototype V2 Kyle Reed & Nance Ericson August 2019	

Revised JFET circuit enabling placement inside the Co-60 source for 100 MRad dose test

- The revised JFET boards will be tested inside the source cylinder to ≥100 Mrad or to failure
- Only a single sensor oscillator was placed on the board
- Other variability was removed from the design
- Connections are soldered directly to the board
- A tab was added on the board to better facilitate PCB placement and removal from the center of the source
- A notch was cut in the board to attach a cable tie for cable strain relief

High-temperature radiation-hardened electronics

12

The expected impacts and benefits includes,

1) Energy harvesting from nuclear radiations where no other energy sources are available;

2) Validation of the proposed electronics system incorporating energy harvesting and advanced communications through dense barriers, as is needed in nuclear environments.

3) Development of a detailed strategy for full realization of a high temperature, radiation tolerant electronics and data communication platform for nuclear environments.

Conclusion

Conclusions

- 1. The TEG power module passed the gamma radiation test and proved functional in nuclear environment.
- 2. High-temperature audio signal & text through-wall transmission were tested and proved feasible.
- 3. A High-temperature and Radiation Hardened Electronics Circuit was

designed and radiation test was successful.

Lei Zuo (PI, <u>leizuo@vt.edu</u>), Virginia Tech Haifeng Zhang, University of North Texas Nance Ericson, Roger Kisner, Kyle Reed ,ORNL

Clean. Reliable. Nuclear.