San Pasqual Band of Indians Microgrid Project

John Flores

Environmental Director & Domestic Water Manager,

San Pasqual Band of Mission Indians

November 19, 2019

San Pasqual General Information

- Reservation was established in 1910
- The current Reservation encompasses approximately 3,143 acres (Trust 1,990; Fee 1,153)
- 280 Tribal members and over 1,400 lineal descendants
- Reservation population is 1,600
- Installed PV on our Education Builling (2017; DOE Grant)
- 425 homes on the reservation
- 83 homes have solar (19.5%)
 - 55 GRID Alternatives
 - 23 DOE Grant (2016 2019 DOE Grant)
 - 5 private solar companies
 - First residential PV install in August 2011 (GRID)

Microgrid Project Grants & Budget

DOE Grant & DOE Match (2018), GRID Grant (2019) = \$1,606,070

 \$728,035 DOE grant, \$728,035 DOE match, \$150,000 GRID Tribal Solar Accelerator Grant

Non-Cash Match = \$210,487

- SPBMI Personnel & Fringe: \$104,030
- SPBMI Public Works Equipment: \$31,450
- Indirect Costs: \$39,507
- Volunteer Labor: \$30,000

Cash Match = \$517,548

What is a Microgrid?

• Microgrid Definition

 A group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both gridconnected or island-mode.

Proposed Microgrid Components

San Pasqual Microgrid Project Goals

<u>Resilience</u>: Maintain electric power during outages

Economic: Reduce electricity costs

Environmental:

Achieve 100% Renewable Energy (net zero)

Reduce GHG and other air pollutant emissions

SDG&E Outages

Power Supply Threats & Impacts

THREATS

- Severe weather
- ≻ High winds
- ➤ Wildfires
- > Earthquakes
- Localized physical damage to utility distribution systems
- SDG&E system upgrades (planned outages)

IMPACTS

- 20+ hour outage in 2017
- Lost Productivity & Revenues
- > Equipment Damage
- Inability to Use Facilities

San Pasqual and Wildfire

SDG&E Power Outages

- San Pasqual Government Buildings (Admin/Tribal Hall, Fire, Housing/Police, Education) experience multiple power outages each year
- Outages can extend for multiple hours; the longest outage in 2017 affected the five essential tribal facilities for a period of 19 to 20 hours
- > Tribal Hall is a Certified Red Cross Emergency Shelter

Public Safety Power Shutoff

- What is a Public Safety Power Shutoff? As defined by PG&E:
- For public safety, it may be necessary for us to turn off electricity when gusty winds and dry conditions, combined with a heightened fire risk, are forecasted. This is called a "Public Safety Power Shutoff" or "PSPS."
- While customers in high fire-threat areas are more likely to be affected, any of PG&E's more than five million electric customers could have their power shut off. This is because the energy system relies on power lines working together to provide electricity across cities, counties and regions.
- This has now been adopted by all California investor owned utilizes (IOUs) (PGE, SDGE, SCE)

Resiliency

Priority/Critical Electricity Loads

Facility	Emergency Purpose	Critical Electric Loads
Tribal Administration	Red Cross evacuation center; emergency public shelter; tribal command and control; first aid	HVAC, lighting, telecom/IT, food storage, food service
Housing & Security	First response (police); public safety and security monitoring	Telecom/IT, security camera monitoring, lighting
Fire Department	First response (residential fire station); 911 emergency dispatch	Telecom/IT, lighting, overhead door operation
Education Building	Emergency public shelter	HVAC, food storage, food service, lighting
Preschool	Emergency public shelter	HVAC, lighting
Wastewater Treatment Plant	Wastewater treatment for complex	Full load

Major* Outage	Tribal Admin	Housing/	Fire	Education	Preschool
Duration (2017)	Offices	Security	Station		
Outage Minutes	2,040	2,040	1,275	1,260	1,260
Outage Hours	34	34	21	21	21
Longest Outage - Minutes	1,200	1,200	1,125	1,110	1,110
Longest Outage - Hours	20	20	19	19	19

Fig. 4.2: Major Outages at Essential Tribal Facilities (2017)

*Outage duration derived from 15-minute interval metering data for seven SDG&E electric meters serving five buildings. This data excludes frequent outages lasting less than 15 minutes.

Economics

2017 Usage & Cost

During 2017, the five essential facilities consumed 288,481 kWh of electricity supplied by SDG&E

SDG&E billed the tribe \$74,886 for that electricity over a 12-month period – representing an average unit cost of \$0.2596 cents/kWh

The tribe pays a relatively high price (\$0.256/kWh) for grid electric service that has been demonstrated vulnerable to outages

Generation/electricity charges on these bills varied by season and time of use

Tribal Benefits (Preliminary)

- Strengthening the tribal administration's ability to provide critical public services including first response (both fire and police), reservation security, emergency sheltering and evacuation capacity, and administration command and control capabilities
- Saving approximately \$45,190 in electric energy costs per year on average, or \$1.13 million over the system's 25-year useful life.
- Reducing net electric energy imports to the reservation by approximately 278,481 kWh per year
- Producing approximately 6.5 GWh of renewable electricity over the system's lifetime to offset about 96% of the tribe's grid electricity consumption for the five facilities served.

Environment

Tribal & Environmental Benefits (Preliminary)

- Reducing the environmental footprint by approximately 1,954 tons of carbon dioxide (CO2), 275 lbs. of sulfur oxides (SOX), and 1,648 lbs. of nitrogen oxide (NOX) over the system's lifetime
- Enabling the safe installation of 4 electric-vehicle (EV) charging stations at the Tribal Administration building parking lot
- Backup propane gensets to provide standby capacity in the event of an outage at a time when the batteries are depleted from daytime load
- Upgrading San Pasqual Government electrical infrastructure to 3phase service
- > First tribe in San Diego County with a microgrid

Project Accomplishments

Project Consultant Team

Josh Simmons President, Principal Consultant Prosper Sustainably <u>www.prospersustainably.com</u> Michael Burr Director, Principal Consultant Microgrid Institute <u>www.microgridinstitute.org</u>

Dustin Jolley Associate Principal, Engineer Sage Renewables www.sagerenewables.com

Project Completion (Pre-Construction)

Project Team held a stakeholders meeting on September 18, 2019

 \checkmark

Completed SDGE application for 3-phase service in September 2019

櫽

Completed the project RFP and released it on November 4, 2019

Completed the bid/job walk with interested contractors on November 13, 2019

All bids are due December 16, 2019

Stake Holder Meeting

SPBMI Business Committee

SPFD Chief

SPPD Chief

SP Public Works Director

SP Planning Director

SP Education Department

SDG&E (Separate individual meeting with Tribal Laiason)

Outage Scenarios & Resilience Targets

How long should microgrid support full operations?

How long should microgrid support critical operations?

SPBMI Concept Examples:

- Short-duration outage (<1 day) Transition to microgrid mode; maintain operations w/ modest load shedding/management; primary power via solar PV and BESS; supplement with LPG Generator if needed in evening hrs.
- Longer-duration outage (>1 day) after first day, implement more aggressive load shedding and prioritize critical loads. Assess anticipated outage duration and LPG fuel supply.
 - Solar PV will be adequate to power near full operations during the daytime hours.
 - LPG Fuel supply example w/ 2000 gal onsite storage; 100kW genset consumes ~15 gal/hr; at ~8hrs/day (morning and evening hrs), may be adequate to supply ~2 weeks of stand-alone operations.

Other Considerations

Microgrid Black Start v. Seamless Transition

• What is an acceptable time gap for the microgrid to restore power (and vice versa)? How long does it take to start generators currently?

Some manual curtailment of electricity loads may be required in certain scenarios

• Will be automated to the extent possible, but may be limited

Multiple operational settings

- Maximum Resilience $\leftarrow \rightarrow$ Maximum Cost Savings
- Adjustable: to account for outage risk and economic objectives

Upgrading to 3 phase power

Underground microgrid power lines

Other Considerations

Meters may be reconfigured

• E.g. single point of interconnection w/ master and sub meters

Propane (LP) Gensets v. Battery Energy Storage Systems (BESS)

- BESS are more expensive than LP gensets, but eco-friendly and can be utilized continuously
- LP gensets are less expensive than BESS, but less eco-friendly and only for outages
- How strong is the desire to minimize propane usage during an outage?

Scope and Role of San Pasqual Public Works Department

• May impact contractor warranty, schedule, and performance guarantees

Anything else?

Project Steps and Timeline

Finalize conceptual design and requirements	9/30/2019
Prepare and release RFP	11/04/2019
Review and evaluate proposals	12/31/2019
Negotiate design build contract	1/31/2020
Finalize engineering design*	3/30/2020
Construct and deploy microgrid*	9/30/2020

*Timing is approximate and will be updated during negotiation with design build contractor(s).

Thank you

Questions and Comments

John Flores: (760) 310 – 6697 (cell) johnf@sanpasqualtribe.org