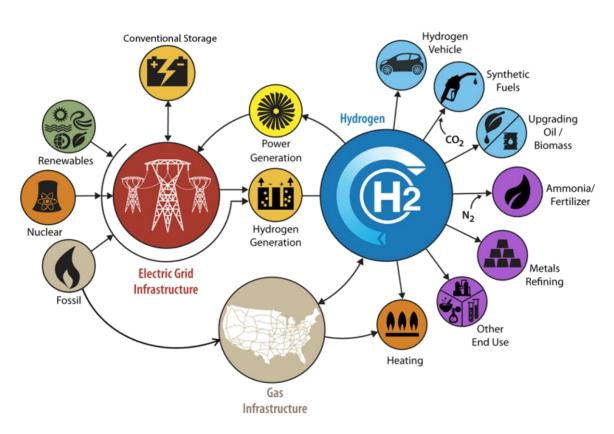


Demonstration and Framework for H2@Scale in Texas and Beyond

Nico Bouwkamp – Pl Michael Lewis – Co-Pl – University of Texas at Austin H2@Scale Session - Fuel Cell Seminar November 5, 2019



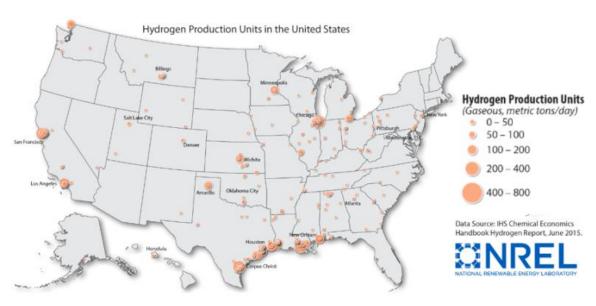
- Energy Engineering
- Electric Transportation
- Energy Efficiency Programs
- Advanced Power Generation
- Foodservice Energy & Water
- Cloud-based Software

FrontierEnergy.com

H2@Scale Vision

- H₂ enables zero emissions in transportation, stationary, remote, and portable power
- H₂ used as a grid "responsive load" for grid stability and GWh energy storage, and increase power generators utilization
- H₂ critical feedstock for entire chemicals industry
- Domestically sourced H₂ for multiple sectors or export

https://www.energy.gov/eere/fuelcells/h2scale


H2@Scale in Texas

Texas ideal to lead H₂ production for a sustainable energy system

- Excellent resources of natural gas, solar and wind for RH₂
- Largest H₂ producer in the nation
- Major industry leaders on Hydrogen Council

have significant presence in Texas

Toyota, Shell, and Air Liquide

US DOE Award for H2@Scale in Texas

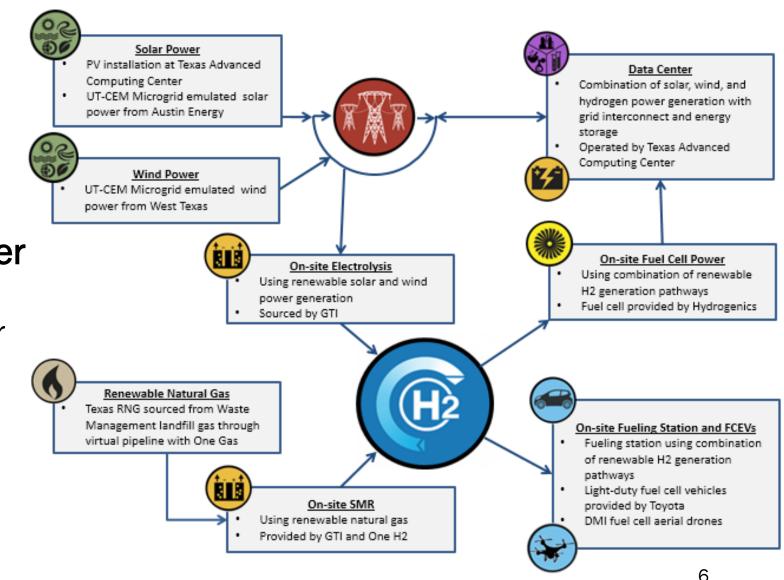
Two unique RD&D tracks to understand the potential of integrating hydrogen with multiple co-located platforms and existing resources

- Demonstrate multiple RH₂ generation options, co-located with vehicle fueling and a large base load consumer to enable cost-effective H2 energy solutions
- Develop framework for actionable H2@Scale pilot plans in Texas, Port of Houston and Gulf Coast region, including energy storage

Project Duration: 3 years, beginning early 2020

Demonstration activities at UT

Renewable H₂ generation


- SMR using RNG
- Electrolysis using wind and solar power

Large scale, industry H₂ user

Fuel cell powering Texas
 Advanced Computing Center

Vehicle refueling

- Light-duty vehicles
- Unmanned aerial vehicles

Port of Houston H₂ Framework

- Identify key stakeholders, existing H₂ infra and business in region
- Identify policy and regulatory barriers
- Define use and implementation plans leveraging existing industry resources
- Develop actionable plan for H2@Scale and FCEV rollout in region

Program summary

Period of performance: 36 months

	Key milestones & deliverables
Year 1	 Demonstration site planning and construction Technoeconomic H2@Scale models in Texas
Year 2	Commence demonstration activitiesComplete framework for H2@Scale in Texas
Year 3	Complete demonstration and assess ability to provide cost-effective hydrogen

Questions?

Nico Bouwkamp
Technical Program Manager
nbouwkamp@frontierenergy.com
(916) 375-8050

Michael Lewis
Sr. Engineering Scientist
University of Texas at Austin, Center for Electromechanics
mclewis@cem.utexas.edu
(512) 232-5715

