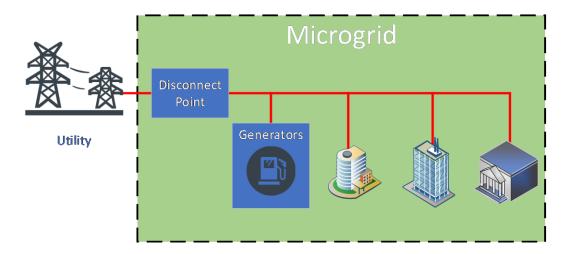


Microgrids

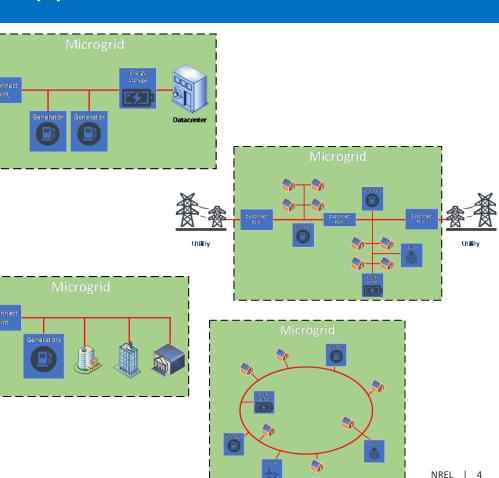

Robert Wood Senior Electrical Engineer - Microgrids December 11, 2019

What is a Microgrid?

Microgrid Definition

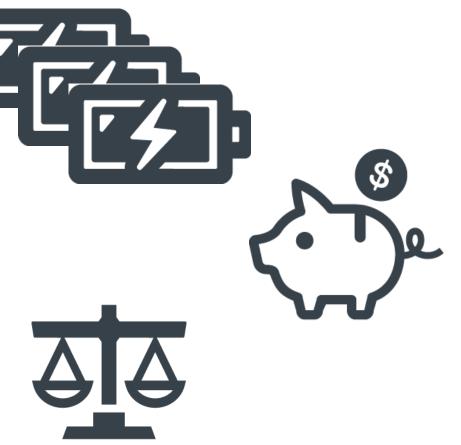
• Definition:

- A group of interconnected loads and resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid.
- A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or islandmode.
- A microgrid can also operate always isolated from the grid (remote locations).

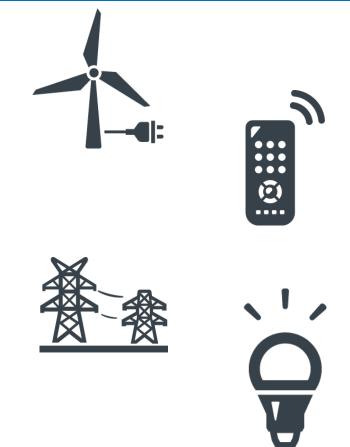

Microgrid Applications

Utility

Utility


• Commercial/Industrial:

- Built for reducing costs during grid-tied and providing backup powers:
- Community/City/Utility:
 - Improve reliability, emission and energy targets.
- Facility:
 - Link together critical facilities and combines new/existing equipment.
- Rural Communities (Islands/AK):
 - Sometimes grid-connected, offset fuel and increase resiliency.


Microgrid Benefits

- Reliability:
 - Backup system for grid
 - Diversity of fuel sources
- Economic:
 - Grid-tied services (ancillary services)
 - Renewable production
 - Energy Efficiency
- Other:
 - Improved power quality
 - CHP integration
 - Electrification

Microgrid Challenges

- Renewables:
 - Reduces fuel usage
 - Highly variable
 - Requires backup source
- Stability/Control:
 - Weak grid
 - Grid interaction + islanded modes
 - Grid protection
- Value of Resiliency:
 - How to quantify benefit of 99.9%
- Regulatory:
 - High renewable percentage
 - Outside connections
 - Synchronization

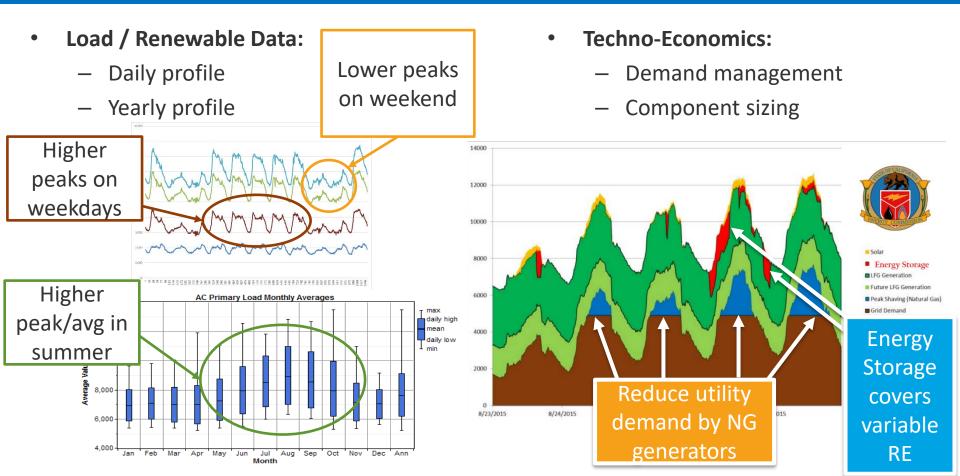
How is a Microgrid Designed?

Microgrid Analysis

Inputs:

Mission goals Utility cost structure Historic/projected load data Location & RE potential

Analysis:


Techno-economic Load served Possible solutions

Outcomes:

Components and sizing Operational Modes

Analysis

Layers of Resilience

- **Utility**:
 - SAIFI, SAIDI rates
 - Multiple connection points
 - Renewables reduce demand

Locations

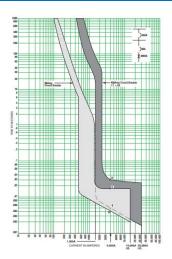
Remote

- Last line of defense
- Works with UPS systems —

Building Generators

Microgrid

- Microgrid:
 - Backup for utility
 - Short outages possible
 - Fuel delivery / availability
 - N+1, N+2
 - Support full load?
 - Renewables extend operation during outages with a limited fuel supply


Engineering Considerations - Components

- Sizing
 - Generators
 - Number
 - Size (W)
 - Redundancy (N+1/N+2)
 - Emissions
 - Renewables
 - Concentrated or distributed
 - Size (W AC and DC)
 - Design life
 - Energy storage
 - Allows diesel off operation
 - Design life
 - Isolation devices
 - Sectionalize the grid
 - Backup path(s)

- Protection:
 - Grid vs. MG mode
 - Arc-flash study
 - Coordination, arcflash and flow studies

- Utility:
 - Interconnection agreement
 - Minimum import
 - Rate structure

Engineering Considerations – One-Lines

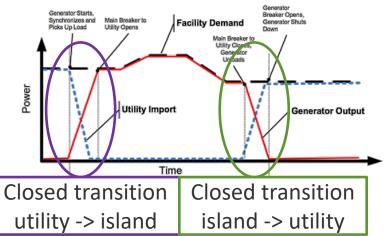
- Source location(s)
 - Electrically
 - Physically
- Load locations
 - Electrically
- Point(s) of common coupling (PCC)
 - N/A to remote locations
- Distribution bus(s)
 - Breaker connections
 - Same voltage
- Transformers
 - Change voltage
 - Must be energized
- Isolation devices
 - At PCC
 - Feeder isolation

Microgrid Concepts

Operational Modes

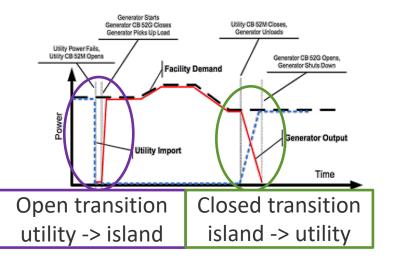
- Grid-Tied Mode:
 - Frequency is set by the grid
 - Microgrid sources can operate independently
 - Real and reactive power regulated at point of coupling
 - Voltage impacted locally by sources
 - Available fault current is high
 - Little impact from variable renewables and loads

Island Mode:

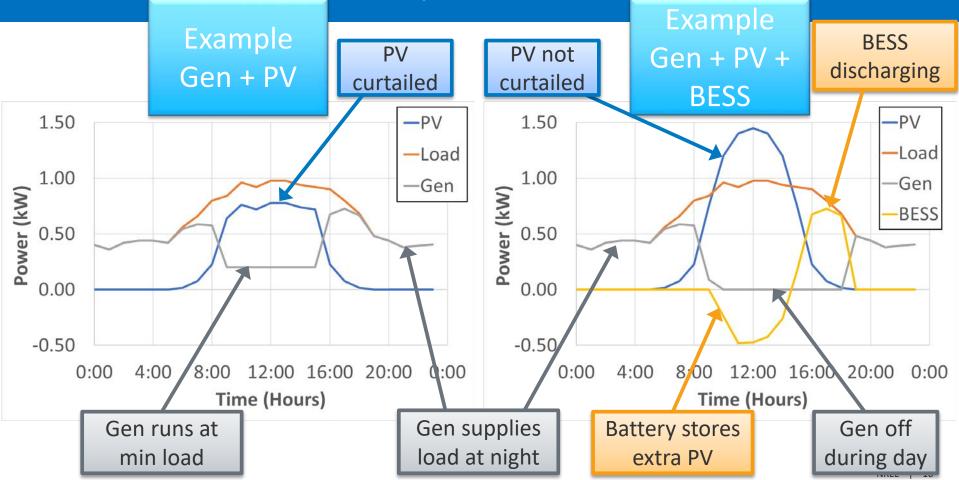

Remote locations only operate in this mode.

- Frequency set by grid-forming source
- Sources will share load or output constant power
- Sources will share reactive power
- Voltage impacted locally by sources
- Available fault current is low
- Large impact from variable renewables and loads

Utility <-> Island Transitions


Closed Transition

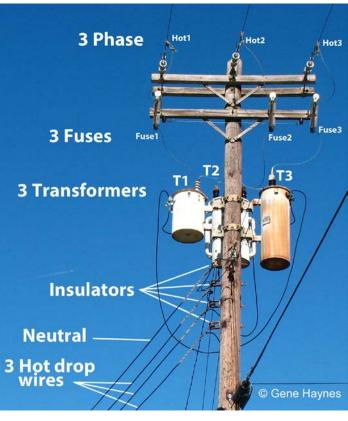
- Planned sequence
- Generators sync and share with utility
 Timeframe varies 20 ms to 5 min
- No loss of power



Open Transition

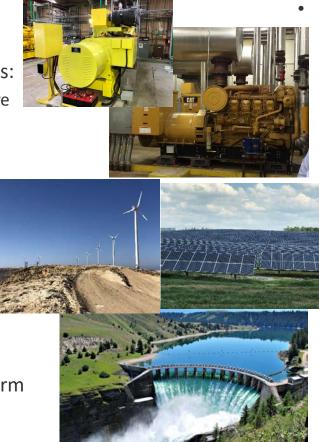
Unplanned sequence after utility outage
 Short duration outage – 5 sec to 10 mins+
 Expensive and complex to avoid outage

Islanded Operation Examples

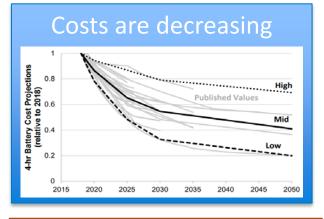

MG Components

Components of Microgrids

Components


- ✤ Generation
- Energy storage
- Loads
- Lines
- Switching Devices
 - Disconnect switch
 - Automatic transfer switch (ATS)
- Protection Devices
 - Circuit breaker
 - Recloser
 - Fuses
- Power Factor Correction
 - Voltage regulator
 - Capacitor

Typical Sources


- Fuel generators:
 - Can grid-form
 - Fuel considerations:
 - Diesels are more stable
 - NG lower
 emissions
 - Load share easily
- Wind/PV:
 - Can't grid-form
 - Highly variable
 - Curtailable
- Hydro:
 - Sometimes grid-form
 - Less variable

- Energy Storage:
 - Can grid-form
 - Storage options:
 - Batteries
 - Flywheel
 - Pumped hydro
 - Thermal
 - Flow
 - kW rating
 - Affects stability
 - Enables diesel-off
 - Enables more renewable penetration
 - kWh rating
 - Duration
 - Reduces fuel usage

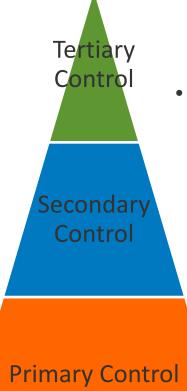
Energy Storage

Use-cases are Expanding

- Demand management
- Time shifting
- Resilience
- Frequency regulation
- Renewable storage
- Voltage stability

Different Than a Generator

- Faster response time
- Tighter voltage and frequency control
- Much lower fault currents
- Can absorb power
- Can be programmed to emulate generator

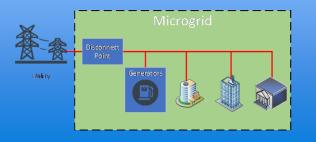

Other Considerations

- Round trip efficiency ~90%
- Operations impact lifespan
- More complicated to control
- Storage is usually DC, grids are AC
- Made of two elements, inverter and storage

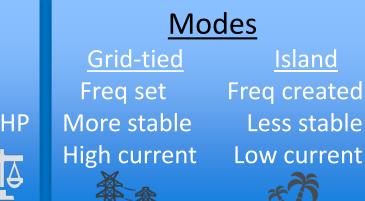
Layers of Controls

- Tertiary Control:
 - Slowest level (min to hr)
 - Interactions with larger grid
 - Economics
 - Weather

- Primary Control:
 - Embedded controls
 - Fastest (ms to sec)
 - Stabilize voltage/frequency
 - Fault protection



- Secondary Control:
 - "Microgrid Controller"
 - Medium speed (sec to min)
 - Balance loads/sources
 - Update setpoints
 - Step through sequences


Summary

Microgrid

Isolated or stand-alone grid section with sources and loads

Benefits Resiliency Economics Power quality/CHP

Microgrid Design

Economics Resiliency requirements Component sizes and locations

<u>Components</u> Sources

Generator and inverter based

Energy storage Isolation devices

