

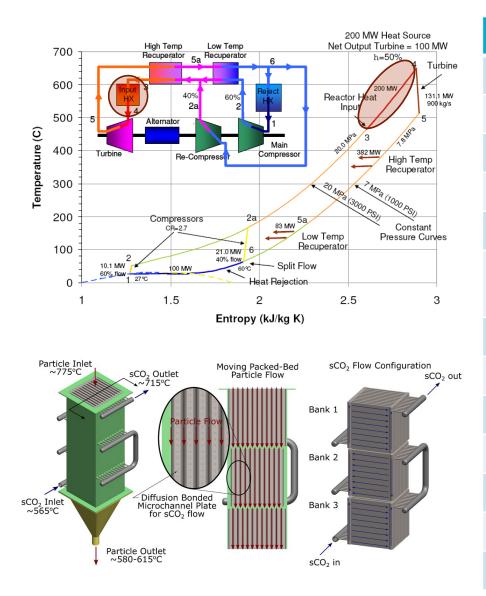
Heat Exchanger State of the Art National Lab Perspective

October 31-November 1 2019, Denver, Colorado, USA

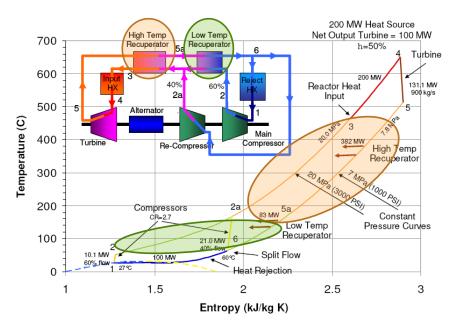
Matthew D. Carlson, Sandia National Laboratories

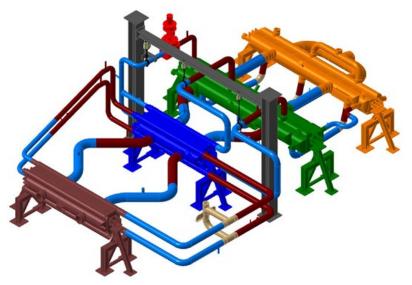
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525. SAND2019-13276 PE

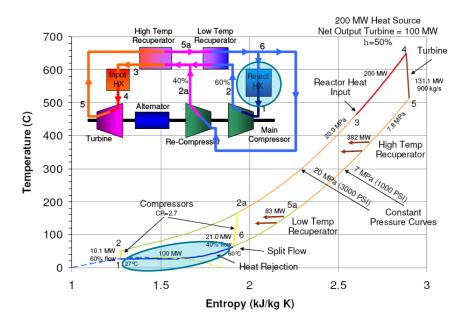


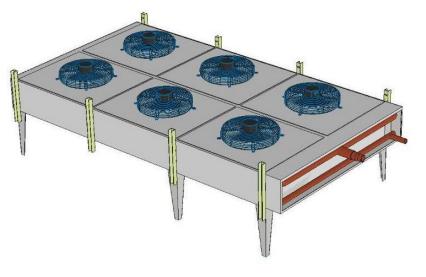
Refining the Scope of Supply


Heat Exchanger State of the Art: National Lab Perspective


³ Scope of Supply: Primary Heat Exchangers

Design Line Item	Hot Side	Cold Side	Comment(s)
Composition	Varies	CO2	Particles, salt, gas
Flow / kg/s-MWth	4 to 5	3 to 6	Trades with ΔT
Inlet Temp / °C	635	~470	Trades off with
Outlet Temp / °C	~485	620	storage cost
Pressure Drop / bar	1	2 to 10	Trades with efficiency
MAWP / bar	1 to 10 250	250	Particles, Salts Gas
MDMT / °C	649	649	Code Case 2577
Flow Direction	Down	Up	For gravity flow/drain
Est. Channel Size	5 mm	1 mm	
End Connections	Clamp	Clamp	Grayloc-style
Materials	\$31600/3	\$31600/3	Particles
	S34709?	\$31600/3	Molten Salt
	\$31600/3	\$31600/3	Gas


4 Scope of Supply: Recuperators



Design Line Item	Hot Side	Cold Side	Comment(s)
Composition	CO2	CO2	
Flow / kg/s-MWth	3 to 6	3 to 6	Trades with ΔT , config
Inlet Temp / °C	~470	>100	Trades off with cycle
Outlet Temp / °C	<150	~470	config/efficiency
Pressure Drop / bar	2.5	2.5	Trades with efficiency
MAWP / bar	>70	250	
MDMT / °C	<550	<550	Code Case 2577
Flow Direction	Any	Any	
Est. Channel Size	1 mm	1 mm	
End Connections	Clamp	Clamp	Grayloc-style
Materials	\$31600/3	\$31600/3	

5 Scope of Supply: Direct Air Coolers

Design Line Item	Hot Side	Cold Side	Comment(s)
Composition	CO2	Air	
Flow / kg/s-MWth	3 to 6	100-250	Due to pinch
Inlet Temp / °C	150	~30	Tradas off size pinch
Outlet Temp / °C	55	60	Trades off size, pinch
Pressure Drop / bar	2.5	Varies	Trades with blower
MAWP / bar	250	~1	
MDMT / °C	200	200	
Flow Direction	Any	Any	
Est. Channel Size	1 mm	1 mm	
End Connections	Clamp	Clamp	Grayloc-style
Materials	\$31600/3	\$31600/3	

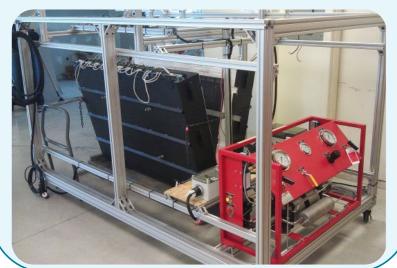
Current Efforts to Improve Performance

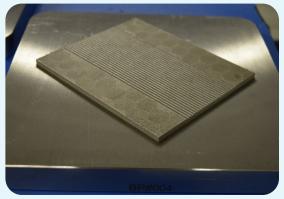
Heat Exchanger State of the Art: National Lab Perspective

7 Performance Validation

Particle-sCO2 at Sandia (SuNLaMP) Chloride Salt-sCO2 at ORNL (FASTR) Compact Air Cooler (Not Shown)

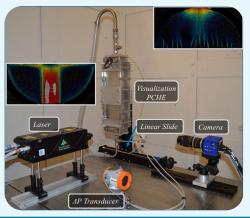
DOE-NE Projects


Sodium-sCO2

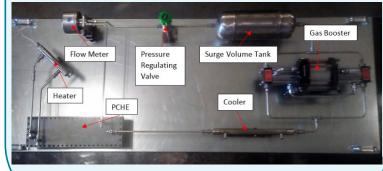

Nitrate-sCO2 Fluoride Salt-sCO2 (Not Shown)

8 Recuperators: Cost Reduction

Thermal Fatigue & Creep


Hybrid Additive Shims

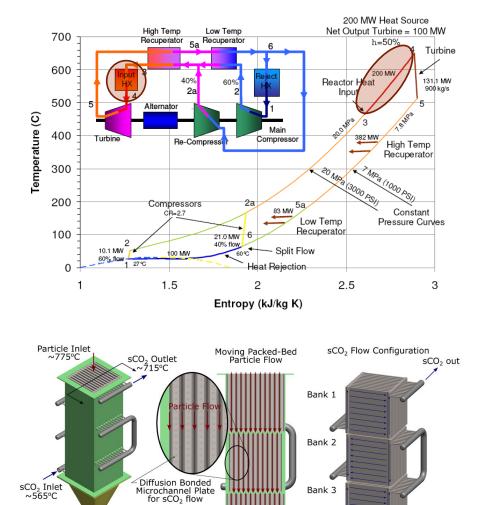
Pressure Fatigue


Flow Distribution

Universities

Failure Modes

Fouling

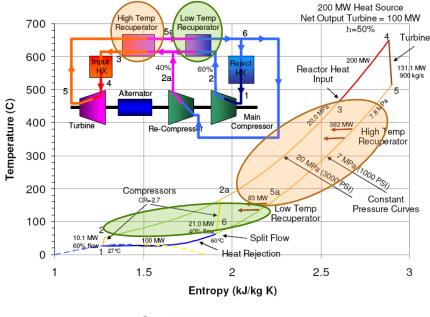


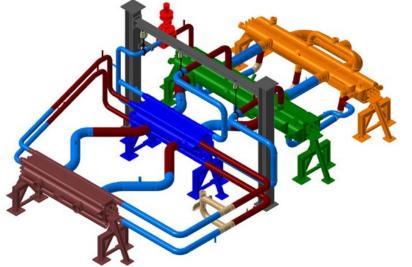
Development Needs & Knowledge Gaps

Heat Exchanger State of the Art: National Lab Perspective

Development Needs: Primary Heat Exchangers 10

Bank 3

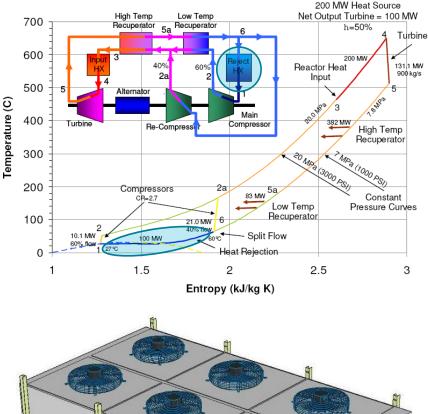

sCO₂ in

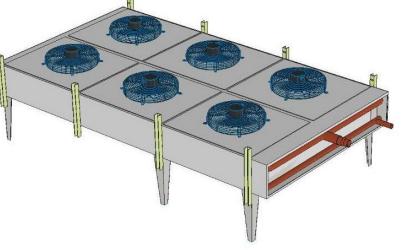

sCO₂ Inlet ~565°C

Particle Outlet ~580-615°C

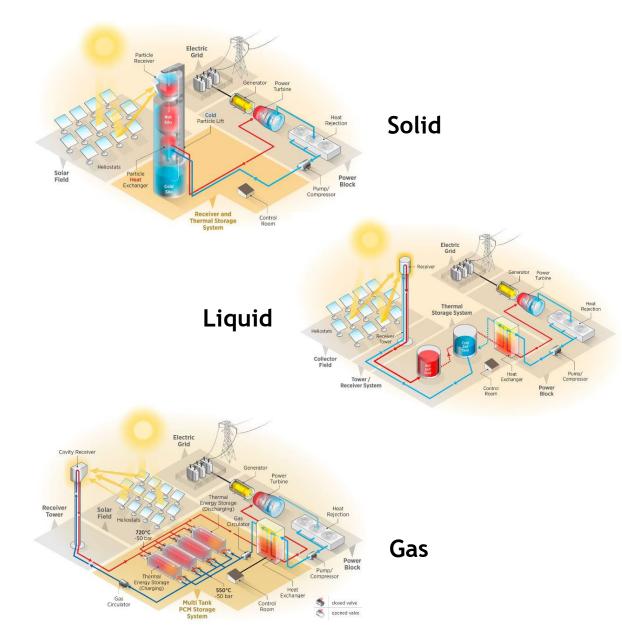
- Hot-side fluid compatibility 1.
 - Molten chloride salts 0
 - Liquid sodium 0
- Header/manifold arrangements 2.
 - Especially for wider plate spacings 0
- Thermal fatigue/creep validation 3.
 - Not required for ASME BPV 0 Code Section VIII but important
- Demonstration at ≥ 1 MWth scale 4.
- Faster, cheaper shim fabrication 5.
 - Chemical etching is a major 0 schedule and cost bottleneck

Development Needs: Recuperators





- 3. Thermal fatigue/creep validation
 - Not required for ASME BPVCode Section VIII but important
- 5. Faster, cheaper shim fabrication
 - Chemical etching is a major schedule and cost bottleneck


Development Needs: Direct Air Coolers

- 5. Faster, cheaper shim fabrication
 - Chemical etching is a major schedule and cost bottleneck
- 6. Balancing compactness and airside blower size/cost
 - Large air-side heat transfer area
 - Increasing compactness increases blower size, cost, and ducting
 - Intermediate water loop adds considerable operating costs

13 **Conclusions**

- Suggested baseline scopes of supply
 - MAWPs and MDMTs
 - Normalized flow and pressure drop
- Can leverage several key activities
 - 10 to 100 kW_{th} Performance Demonstrations
 - Component-level R&D for cost reductions
- Several development needs remain
 - 1. Hot-side fluid compatibility
 - 2. Header/manifold arrangements
 - 3. Thermal fatigue/creep validation
 - 4. Demonstration at ≥ 1 MWth scale
 - 5. Faster, cheaper shim fabrication
 - 6. Balancing compactness and air-side blower size/cost