

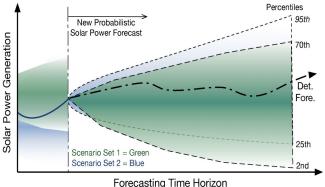
Solar Uncertainty Management and Mitigation for Exceptional Reliability in Grid Operations (SUMMER-GO)

Solar Forecasting II: Annual Review and Workshop PI: Bri-Mathias Hodge October 8, 2019

Other Contributors: Kate Doubleday & José Daniel Lara (NREL), Cong Feng, Binghui Li & Jie Zhang (UT Dallas), Stephen Jascourt & Chris Cassidy (Maxar), Pengwei Du, Sean Chang, & Sandip Sharma (ERCOT)

SUMMER-GO will bring probabilistic solar forecasts into ERCOT's real-time operation environment through automated reserve and dispatch tools that increase economic efficiency and improve system reliability.

- Develop accurate, calibrated, and sharp probabilistic solar power forecasts at multiple time-scales & spatial resolutions
- Develop and validate risk-parity economic dispatch for *5-minute dispatch period* through *novel application* of financial planning techniques
- Develop and validate adaptive reserves algorithm to reduce flexibility and regulation reserves by >25% and deploy in ERCOT'S iTest system
- Produce situational awareness tool, SolarView, to present relevant, timely information and allow for *better decision making*



Budget Period 1 Focuses:

- 1. Develop Probabilistic Solar Power Forecasts
- 2. Develop Adaptive Reserve Algorithms
- 3. Develop Risk-Parity Dispatch
- 4. Develop Situational Awareness Tool, SolarView

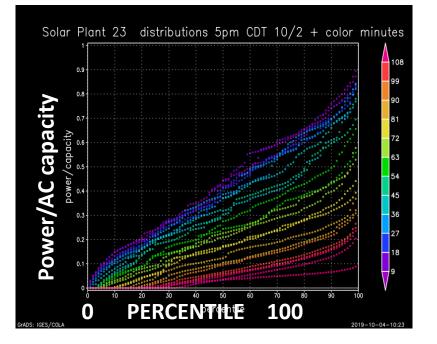
Large ensemble development

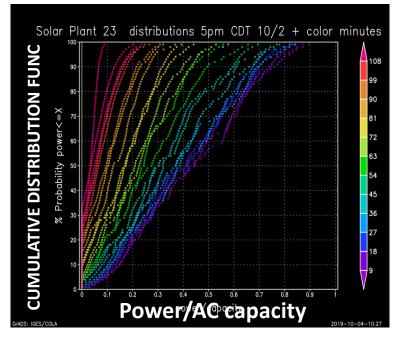
- Expanding from typical ensemble size to very large, ~130-member ensemble
- Combination of time-lagged members and perturbed ensemble sets
- NWP model GHI passed through Maxar solar power forecast system \rightarrow power for each member

Model	Output grid	Output maximum lead time	Output interval	Forecast updates	Time lag members in dataset	Number of members per run
ECMWF High-res	0.125°	240 h	1 h	6 h	3	1
NOAA GFS	0.25°	384 h	1 h	6 h	3	1
NOAA NAM nest	3 km	60 h	1 h	6 h	3	1
NOAA HRRR	3 km	18 h	15 min	1 h	15	1
ECMWF ensembles	1°	360 h	6 h	12 h	1	51
NOAA GFS ensembles	0.5°	384 h	3 h	6 h	1	21
NOAA Rapid Refresh	13 km	18 h	1 h	1 h	15	1
NOAA Short-Range Ens	16 km	87 h	3 h	6 h	1	13
Canadian Global	0.24°	384 h	3 h	12 h	2	1
Canadian Regional	10 km	48 h	1 h	6 h	3	1

Example Forecasts From Large Ensemble

- Real-time example: Issued at 5:00 pm on October 2nd for 6:00 pm
- Late in the day with variable clouds





Probabilistic Forecast Post-Processing

Challenges of raw NWP ensemble:

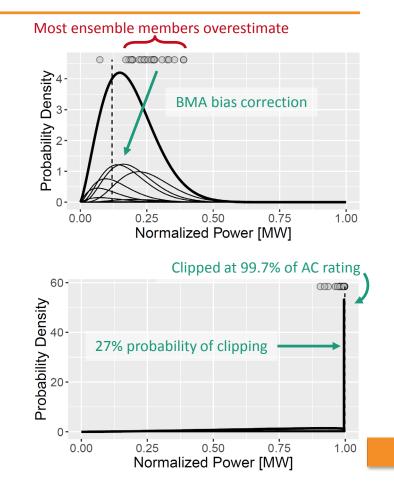
- Under-dispersion, bias, and coarseness
- Inverter clipping

Bayesian model averaging (BMA) post-processing:

- Member-by-member correction
- Members weighted based on historical performance
- Overall probability is a mixture:

$$p(y|f_1, ..., f_K) = \sum_{k=1}^K w_k h_k(y|f_k)$$

- Each ensemble member is dressed with a two-part model, $h_k(y|f_k)$:
 - 1. Beta kernel
 - 2. Estimate of probability of clipping



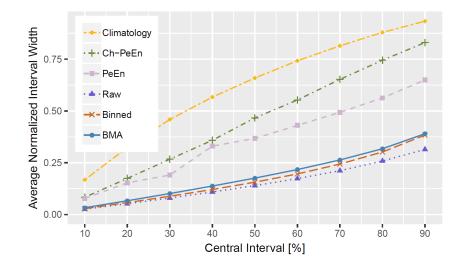
Forecast Benchmarking

Case study for probabilistic metric evaluation:

- Rolling 4-hour ahead, hourly resolution forecast over 2018
- 11 sites in Texas

Compare 4 methods:

- 1. (Benchmark 1) "PeEn": Persistence Ensemble
 - Empirical CDF of last 20 measurements at same hour of the day
- 2. (Benchmark 2) "Raw": Empirical CDF of raw NWP ensemble
- 3. "SLI": 72-hour Sliding Window BMA forecast
 - Trained with forecasts and observations from the last *n* hours
- 4. "TOD": 60-day Time-of-Day BMA forecast
 - Trained with forecasts and observations from the last n days, plus a (2n + 1)-day window centered at the same date in the previous year



Probabilistic Metrics

• Evaluate average sharpness of central $(1 - \rho) \times 100\%$ interval:

$$\frac{1}{T} \sum_{t=1}^{T} F_t^{-1} \left(1 - \frac{\rho}{2} \right) - F_t^{-1} \left(\frac{\rho}{2} \right)$$

• Continuous Ranked Probability Score (CRPS) captures sharpness and reliability

$$\overline{\text{CRPS}} = \int_0^1 \frac{1}{T} \sum_{t=1}^T \text{QS}_{\phi}(F_t^{-1}(\phi), y_t) d\phi$$

o where the quantile score is:

$$\mathsf{QS}_{\phi} = 2(\mathbf{1}\{y_t \le F_t^{-1}(\phi)\} - \phi)(F_t^{-1}(\phi) - y_t)$$

 \circ \quad Can be substituted with weighted quantile score:

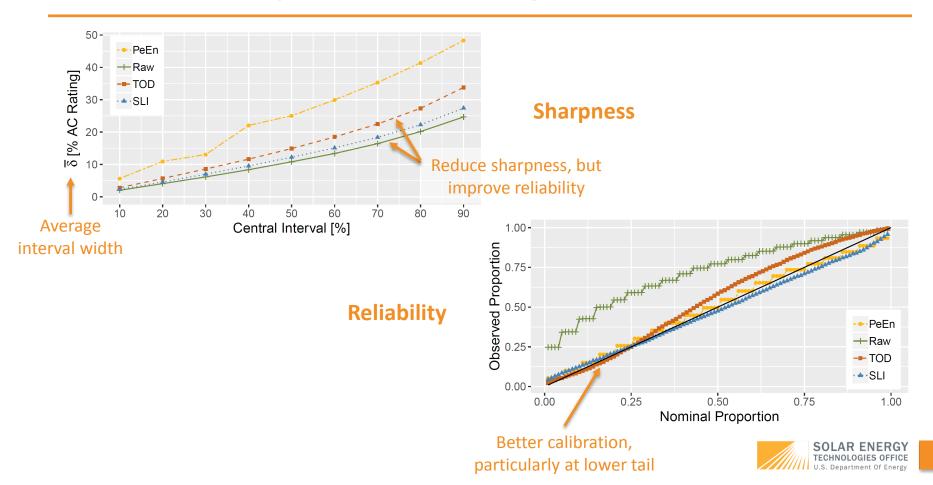
wQS_{$$\phi$$} = w(ϕ)QS _{ϕ} , where w(ϕ) =

$$\begin{cases}
(1 - \phi)^2, & \text{left-weighted} \\
\phi(1 - \phi), & \text{center-weighted} \\
\phi^2, & \text{right-weighted}
\end{cases}$$

• Compare improvement over a reference forecast through CRPS skill score:

$$\mathrm{SS} = \frac{\overline{\mathrm{CRPS}} - \overline{\mathrm{CRPS}}_{ref}}{\overline{\mathrm{CRPS}}_{ideal} - \overline{\mathrm{CRPS}}_{ref}} = 1 - \frac{\overline{\mathrm{CRPS}}}{\overline{\mathrm{CRPS}}_{ref}}$$

Methods Comparison for a Single Site



11-Site Case Study Results

- PeEn forecast is coarsely calibrated but broad.
- Raw ensemble is very sharp, but unreliable.
- BMA has CRPS skill scores of 27-50% over PeEn.
- Raw NWP ensemble has CRPS skill scores of 14—45% over PeEn.
- BMA has CRPS skill scores of **3—36%** over raw ensemble.
- Most sites improve with either BMA approach
 - A few are better with SLI but worse with TOD.
- SLI errs towards under-dispersion; TOD errs towards over-dispersion.

 $\overline{CRPS} \& SS \text{ of rolling 4-hour ahead forecasts over 2018 for remaining 9 PV plants. } SS_{PEEN} \text{ is } SS \text{ with PeEn as the reference forecast; } SS_{RAW} \text{ is referenced to the raw ensemble.}$

		$\overline{\text{CRPS}}$ (%P)			SS _{PeEn} (%)		SS _{raw} (%)	
Site	PeEn	Raw	SLI	TOD	SLI	TOD	SLI	TOD
С	9.74	8.40	6.00	5.65	41.2	44.7	28.5	32.7
D	10.2	6.74	6.46	7.35	36.8	28.1	4.13	-9.03
E	13.5	7.53	7.37	7.04	27.8	31.1	2.11	6.54
F	9.86	6.93	6.09	6.10	40.4	40.2	12.2	11.9
G	11.9	10.0	6.39	8.46	37.5	17.2	36.3	15.6
Н	11.0	8.17	6.96	6.96	31.8	31.9	14.8	14.8
Ι	10.8	8.07	6.90	6.89	32.4	32.5	14.4	14.5
J	12.3	7.72	7.47	7.48	26.9	26.8	3.17	3.09
Κ	12.6	6.91	6.44	7.09	37.0	30.6	6.89	-2.53

BMA Forecast Performance

Performance across multiple lead-times

- Analysis re-run at 1-, 12-, and 24-hour lead-times
- Ensemble size reduces from 21 members to 14 (12-hour ahead) or 9 (24-hour ahead)
- CRPS skill score improvements maintained or increased

Performance of Distribution Tails

- Under-estimation of tail risk concerning to utilities
 - High cost, high reliability impacts
- Weighted CRPS skill scores compared to raw ensemble show left tail has the highest improvement (6-47%)
 - Right tail improves for most sites as well, with skill scores up to 22%

	SLI			TOD				
Site	w = 1	$ w_l$	w_c	w_r	<i>w</i> = 1	w_l	w_c	w_r
A	7.87	11.4	8.35	3.25	5.61	8.64	5.20	2.74
В	12.7	16.2	12.0	9.73	13.1	16.4	12.4	10.4
С	28.5	38.7	27.6	16.2	32.7	42.0	31.6	21.9
D	4.13	8.37	3.39	-0.37	-9.03	-6.23	-11.2	-9.54
E	2.11	5.70	1.92	-1.56	6.54	8.52	6.11	4.94
F	12.1	20.7	11.9	1.01	11.9	16.5	10.2	8.26
G	36.3	47.0	34.6	21.8	15.6	28.0	10.9	3.28
Н	14.8	19.6	15.6	8.21	14.8	20.5	14.2	9.23
Ι	14.4	21.2	15.5	4.83	14.5	20.5	13.9	8.30
J	3.17	8.30	2.47	-2.37	3.09	8.96	1.47	-2.05
K	6.89	11.0	7.13	1.46	-2.53	-3.28	-2.37	-1.84

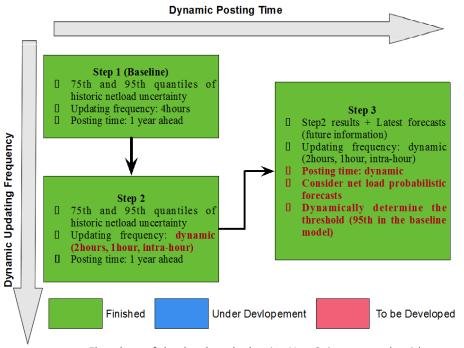
Focus 2: Adaptive Reserve Algorithm (ARA)

Step 1: ERCOT Non-Spinning reserve baseline

- Four-hour block
- 70th/95th netload uncertainty of the same month in previous three years
- Post 1-year before
- Step 2: Dynamic updating frequency
 - Change Non-Spin profile resolution based on data resolution (1-hour)
 - Testing 1-hour and 2-hour updating frequency

Step 3: Dynamic posting time

- Probabilistic netload forecasts
- Update with the forecast's timeline
- Dynamic threshold based on forecasting uncertainty



Flowchart of the developed adaptive Non-Spin reserve algorithm

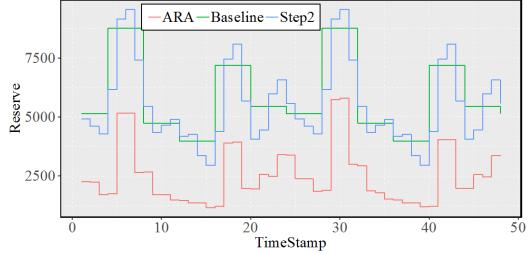
Adaptive Reserves Results

Results from dynamic updating frequency ("Step 2"):

- More flexible updating frequency
- 2-hour updating: 5.3% reduction
- 1-hour updating: 7.5% reduction

Results from adding dynamic posting time ("ARA"):

- Flexible daily profile
- Adaptive based on the future net load uncertainty
- Up to 45% reduction, given case study forecast at 95% confidence level
- The reserve reduction can be modified based on different confidence levels

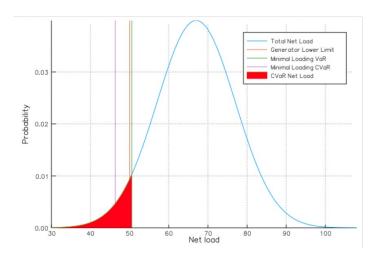


Two day Non-spin profiles of determined by different steps

Focus 3: Risk-Parity Economic Dispatch

Objective: Minimize risk in economic dispatch internalizing Conditional Value at Risk (CVaR)

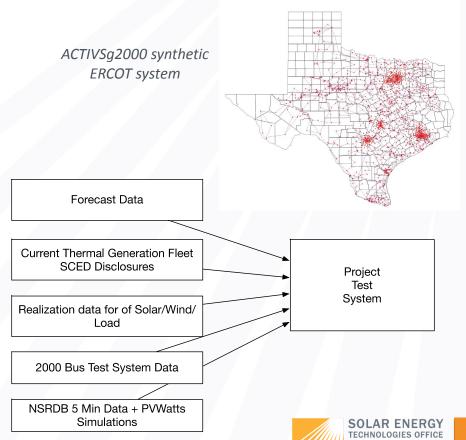
- Two values need be incorporated:
 - curtailment risk
 - load shedding risk
- Model CVaR using the 100 percentiles of the probabilistic forecast



$$\begin{split} \min_{\mathbf{P},\,\delta} & \sum_{i\in\mathcal{T}} f_i(p_{th,i}) + (C_{li}\delta_{li} - C_{rc}\delta_{rc})^2 \\ \text{s.t.} & -\left(\sum_{i\in\mathcal{T}} p_{th,i} + \sum_{k=1}^M u_{li}^k P_{re}^k - \sum_{i\in\mathcal{L}} p_{l,i}\right) \geq \delta_{li}, \\ & \sum_{k=1}^M u_{li}^k = 1, \\ & 0 \leq u_{li}^k \leq \frac{1}{\varepsilon} p^k \quad \forall k = 1, \dots, M, \\ & \left(\sum_{i\in\mathcal{T}} p_{th,i} + \sum_{k=1}^M u_{li}^k P_{re}^k - \sum_{i\in\mathcal{L}} p_{l,i}\right) \geq \delta_{rc}, \\ & \sum_{k=1}^M u_{rc}^k = 1, \\ & 0 \leq u_{rc}^k \leq \frac{1}{\varepsilon} p^k \quad \forall k = 1, \dots, M, \\ & p_{th,i} \in \mathcal{X}_{th,i}, \\ & \delta_{li} \geq 0, \quad \delta_{rc} \geq 0 \end{split}$$

Detailed ERCOT Test Model

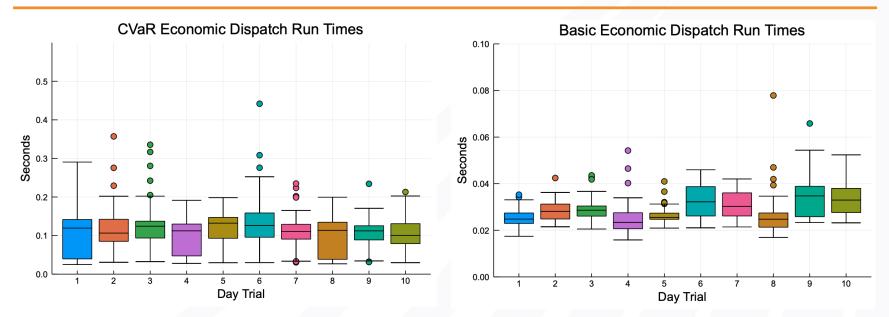
- SCED Disclosure data has been analyzed to develop a comprehensive thermal fleet data set for ERCOT.
- 2 years of realization data for Wind/Solar/Load has been parsed and assigned to the zones.
- The thermal fleet has been assigned to buses in the 2000 Bus System
- New solar plants locations have been identified



Computational Environment

- The resulting problem is an LQ problem.
 - Language: Julia 1.2.0
 - AML: JuMP v0.20.0
 - Solver: Gurobi 8.11 (Barrier Method)
- Hardware:
 - Processor: 3.1 GHz Intel Core i7
 - Memory: 16 GB 2133 MHz LPDDR3
- Simulation and Data Model:
 - PowerSimulations.jl
 - PowerSystems.jl

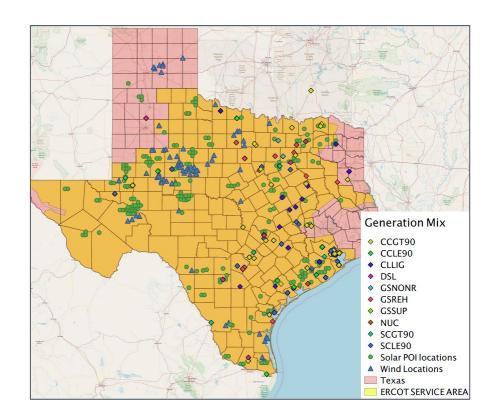
Computational Times CVaR Economic Dispatch

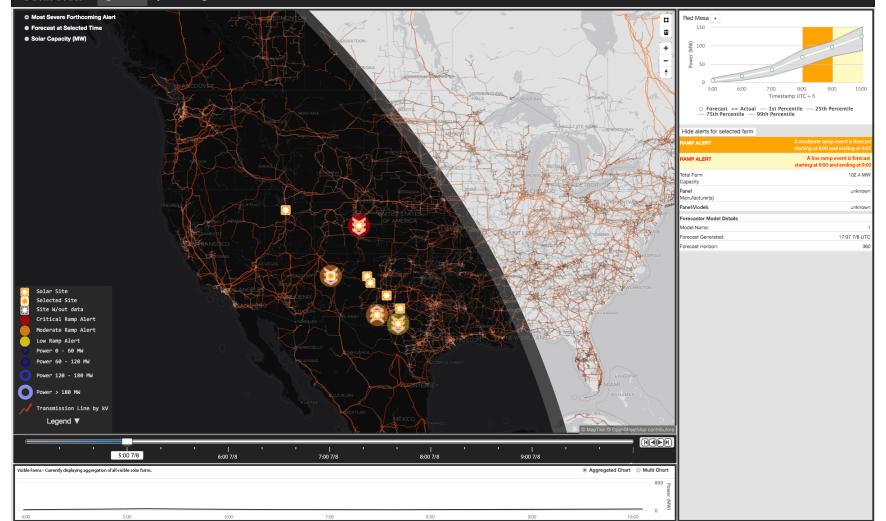


- Preliminary evaluation of 10 representative days of operations: 5-minute resolution, 15-minute update
- CVaR-ED model shows slower solution times given the addition of the probability simplex and the CvAR estimation.
- The solution times are still reasonable to be used for Economic Dispatch operations.

High-Solar Future Scenario: In Progress

- Simulating **39 GW** solar from **204** new plants
 - From ERCOT's Interconnection Queue (May 2019) with completed Full Interconnection
 Study
- **~30%** expected annual solar penetration
 - Keeping load, thermal generators, and wind capacity constant
- Ballpark instantaneous solar penetration (pre-curtailment): >55-90%





Patents and Publications

Conference Presentations and Journal Articles							
Full Author List	Paper Title	tle Conference or Journal		Date			
Stephen Jascourt, Christopher Cassidy, Eric Wertz and Travis Hartman	Probabilistic 5-minute Solar Farm Power Forecasts for the SUMMER-GO Project (poster)	American Geophysical Union Fall Meeting	Washington, DC	December 10- 14, 2018			
Stephen Jascourt, Christopher Cassidy, Eric Wertz and Travis Hartman	Probabilistic Solar Power Using a Large Ensemble	American Meteorological Society 10th Conference on Weather, Climate and the New Energy Economy	Phoenix, AZ	January 7-10, 2019			
Bri-Mathias Hodge	Solar Uncertainty Management and Mitigation for Exceptional Reliability in Grid Operations	2019 ESIG Meteorology & Market Design for Grid Services Workshop	Denver, CO	June 4-6, 2019			
Kate Doubleday, José Daniel Lara, William Kleiber, and Bri- Mathias Hodge	Regional Solar Power Forecasting with Vine Copulas for Power System Applications	Vine Copulas and Their Applications Workshop	Munich, Germany	July 8-9, 2019			
Kate Doubleday, William Kleiber, and Bri-Mathias Hodge	Probabilistic Solar Power Forecasting Using Bayesian Model Averaging (student poster)	IEEE Power and Energy Society General Meeting	Atlanta, GA	August 4-8, 2019			
Kate Doubleday, William Kleiber, and Bri-Mathias Hodge	Probabilistic Solar Power Forecasting Using Bayesian Model Averaging	IEEE Transactions on Sustainable Energy		<i>Submitted</i> September 2019			

Questions?

