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Objectives

Develop Solar Forecasting System based on WRF-Solar that-

 Provides probabilistic forecasts for the grid.
 Ensemble members tailored for solar forecasts.
 Optimized to operate with few ensemble members.
 Calibrated to remove bias in forecasts and has meaningful 

quantification of the uncertainties.
 Improves the current-state-of-art solar forecasts and reduces 

uncertainty by 50% from current levels.
 Improves both average irradiance and ramp forecasts.
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Project Overview

•Identify variables that significantly influence the formation and 
dissipation of clouds and solar radiation through an adjoint
analysis of WRF-Solar modules that influence cloud processes.

•Consolidate the variables identified in step (a) to develop the 
WRF-Solar ensemble forecasting system.

•Calibrate the WRF-Solar ensemble system using measurements 
to ensure that the forecasts’ trajectories are unbiased and provide 
accurate estimates of forecast uncertainties under a wide range of 
meteorological regimes.

•Demonstrate the improvements delivered by the probabilistic 
forecasts for the regions and locations identified by Topic Area 1.

•Develop and deliver an open-source probabilistic WRF-Solar 
system for the solar energy community.

WRF-Solar 

Adjoint analysis of WRF-Solar modules for sensitivity 
study 

Selection of variables for WRF-Solar ensemble 

Calibration of WRF-Solar forecasts to remove bias and 
improve spread accuracy 

Deliver optimized ensemble WRF-Solar package capable 
of providing accurate probabilistic forecasts. 

Selection of members for optimized WRF-Solar 
ensemble 
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Framework for Sensitivity Study of WRF-Solar
Develop a standalone version of each WRF-Solar module
• FARMS radiation scheme
• NOAH LSM
• Thompson microphysics parameterization 
• MYNN boundary layer parameterization
• Deng shallow cumulus scheme 
• Unresolved cloud fraction scheme (additional module)

WRF-Solar
(version 1)

Generate Tangent linear codes using TAF

Sensitivity study for input variables of each module

Linearity test (code validation)
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Tangent linear model (TLM) 
- Derived from the forward model

- Tangent linear operator (L) gives the derivative of the forward model with respect to 
the independent variable

Theory of Tangent Linear

𝐋𝐋 =
𝜕𝜕𝐘𝐘
𝜕𝜕𝐗𝐗

d𝐘𝐘: tangent linear output

𝐘𝐘 = 𝐌𝐌(𝐗𝐗) 𝐌𝐌: nonlinear model
𝐘𝐘: vector of output variables
𝐗𝐗: matrix of input variables

d𝐘𝐘 = 𝐋𝐋d𝐗𝐗
d𝐗𝐗: tangent linear input

𝐋𝐋: matrix of the partial derivatives of 𝐘𝐘 with respect to 𝐗𝐗
(tangent linear operator or Jacobian-matrix)
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Validation of Linear Approximation

∅(𝛽𝛽) = 𝐹𝐹 𝑿𝑿+𝛽𝛽𝑑𝑑𝑿𝑿 −𝐹𝐹(𝑿𝑿)
𝛽𝛽𝑑𝑑𝑿𝑿𝐹𝐹𝐹(𝑿𝑿)

, lim
𝑑𝑑𝑿𝑿→0

𝐹𝐹 𝑿𝑿+𝛽𝛽𝑑𝑑𝑿𝑿 −𝐹𝐹(𝑿𝑿)
𝛽𝛽𝑑𝑑𝑿𝑿𝐹𝐹𝐹(𝑿𝑿)

= 𝟏𝟏.𝟎𝟎

𝑑𝑑𝑿𝑿𝐹𝐹𝐹 𝑿𝑿 : TLM output
𝐹𝐹 𝑿𝑿 + 𝛽𝛽𝑑𝑑𝑿𝑿 : perturbed Forward model acting on 𝑿𝑿 + 𝛽𝛽𝑑𝑑𝑿𝑿
� : norm of the vector

Metric of linearity test

Purpose: Validation of TL codes for linear approximation of physics modules.
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Linearity Test for WRF-Solar Modules

(Performed with 128-bit precision)

Perturbation FARMS Thompson 
microphysics

Noah LSM

0.10000000000000000        
0.01000000000000000       
0.00100000000000000       
0.00010000000000000       
0.00001000000000000       
0.00000100000000000        
0.00000010000000000  
0.00000001000000000     
0.00000000100000000     
0.00000000010000000       
0.00000000001000000      
0.00000000000100000       
0.00000000000010000       
0.00000000000001000       
0.00000000000000100       
0.00000000000000010        
0.00000000000000001

0.00324914467627453
0.00345786558440380
0.00367974446810941
0.00973564692016131
0.05275784331725234
0.34844160934770783
1.00012306741732932
1.00001231128564923
1.00000123117398802
1.00000012311785302
1.00000001231178984
1.00000000123117903
1.00000000012311790
1.00000000001231179
1.00000000000123118
1.00000000000012312
1.00000000000001231

0.42427919061132591
0.43104661976178825

11.40401429679720438
35.23940378673465797
3.56290634414201912
0.01291187993429278
0.03298445036067341
0.15334943930173276
0.42587365386192595
0.79116387355133460
0.96716991951061555
0.99647900764965165
0.99964525412426410
0.99996449863950471
0.99999644959590942
0.99999964495691022
0.99999996449566421

1.48208928881112615
1.12911502161288928
0.98502741052100296
0.99838789495678642
0.99983757392919007
0.99998374516616426
0.99999837439428294
0.99999983743821047
0.99999998374381445
0.99999999837438696
0.99999999983744433
0.99999999998375007
0.99999999999838065
0.99999999999984370
0.99999999999999001
1.00000000000000464
1.00000000000000609

 Even if all the variables are 
perturbed at once, the 
metric converges to 1 with 
sequentially reduced 
perturbations.

 The TL version of each WRF-
Solar module approximates 
well the derivative of the 
nonlinear model solution.

 The linearity test was also 
strictly performed for each 
input variable of each 
module.

Linearity test results for perturbing all input variables
(the other modules were also strictly verified)
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Normalization of Sensitivity

FARMS (including only 2D variables):

∆𝑦𝑦 = ∆𝑥𝑥 ×
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

𝑒𝑒.𝑔𝑔. ∆𝐺𝐺𝐺𝐺𝐺𝐺 = ∆𝐴𝐴𝐴𝐴𝐴𝐴 ×
𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺
𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴

Error of input variable

The error of each input variable can be estimated based on our experience of 
NSRDB, measurement, and the WRF model simulations. 

∆𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒:10ℎ𝑃𝑃𝑃𝑃
∆𝑃𝑃𝑎𝑎𝑎𝑎𝑒𝑒𝑑𝑑𝑎𝑎: 0.1
∆𝑃𝑃𝑝𝑝𝑦𝑦𝑎𝑎. : 0.1
∆𝐶𝐶𝑎𝑎𝑝𝑝𝐶𝐶: 0.001
∆𝑡𝑡𝑎𝑎𝑡𝑡𝑃𝑃𝑎𝑎 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑃𝑃𝑎𝑎𝑎𝑎𝑒𝑒 𝑤𝑤𝑃𝑃𝑡𝑡𝑒𝑒𝑝𝑝:10𝑎𝑎𝑎𝑎

Example of input errors for FARMS:

Use an estimated error of each input variable to normalize the sensitivity results.
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Normalization of Sensitivity
Averaged vertical distributions of 

hydrometeors for 6480 cases

∆𝑦𝑦 = ∆𝑥𝑥 ×
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

Modules including vertical profiles (e.g. 
Thompson microphysics, Noah LSM, 
MYNN PBL):

Method 1: ∆𝑥𝑥 = 𝑒𝑒𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 𝑎𝑎𝑃𝑃𝑝𝑝𝑒𝑒𝑑𝑑 𝑎𝑎𝑜𝑜 𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑜𝑜𝑝𝑝𝑒𝑒

Method 2: ∆𝑥𝑥 = 𝑣𝑣𝑃𝑃𝑎𝑎𝑝𝑝𝑒𝑒 𝑎𝑎𝑜𝑜 𝑥𝑥 𝑝𝑝𝑡𝑡𝑝𝑝𝑒𝑒𝑎𝑎𝑜𝑜

Method 3: ∆𝑥𝑥 = 𝑝𝑝𝑡𝑡𝑃𝑃𝑜𝑜𝑑𝑑𝑃𝑃𝑝𝑝𝑑𝑑 𝑑𝑑𝑒𝑒𝑣𝑣𝑝𝑝𝑃𝑃𝑡𝑡𝑝𝑝𝑎𝑎𝑜𝑜 𝑎𝑎𝑜𝑜 𝑥𝑥
(𝑜𝑜𝑝𝑝𝑎𝑎𝑎𝑎 1 𝑑𝑑𝑃𝑃𝑦𝑦 𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝𝑎𝑎𝑃𝑃𝑡𝑡𝑝𝑝𝑎𝑎𝑜𝑜)
𝑃𝑃𝑡𝑡 𝑒𝑒𝑃𝑃𝑝𝑝ℎ 𝑣𝑣𝑒𝑒𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑃𝑃𝑎𝑎 𝑎𝑎𝑃𝑃𝑦𝑦𝑒𝑒𝑝𝑝

From Thompson 
microphysics 
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Sensitivity Analysis of FARMS
Sensitivity of GHI in clear-sky Sensitivity of DNI in clear-sky 

• The results show that GHI is sensitive to albedo, asymmetry parameter (g), aerosol optical depth (AOD), 
Angstrom exponent (alpha), and water vapor (w) and less sensitive to pressure (p) and solar zenith angle (z).

• The results show that DNI is sensitive to aerosol optical depth (AOD), Angstrom exponent (alpha), and water 
vapor (w).  

Main input variables (X) Main input variables (X)
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Sensitivity Analysis of FARMS
Sensitivity of GHI in cloudy-sky Sensitivity of DNI in cloudy-sky 

• In cloud-sky conditions, both GHI and DNI are more sensitive to cloud optical depth (tau) than 
effective radius (re).

Main input variables (X) Main input variables (X)
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Sensitivity Analysis of Thompson Microphysics
Cloud water mixing ratio Effective radius of cloud water

• Main input variables of Thompson scheme are the vertical profiles of cloud mixing ratios, number 
concentrations of cloud particles, water vapor, temperature, and pressure. 

• The relevant output variables are mixing ratios and effective sizes of cloud liquid water, cloud ice, and snow 
particles.

• The cloud water variables are sensitive to water vapor and cloud mixing ratios.

Main input variables (X) Main input variables (X)
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Sensitivity Analysis of Thompson Microphysics

Cloud ice 
mixing ratio

Main input variables (X) Main input variables (X)

Cloud snow 
mixing ratio

Effective radius of 
cloud ice

Effective 
radius of cloud 
snow

• Similar to the cloud water, the 
cloud ice mixing ratio, and 
effective radius are sensitive to 
water vapor and cloud ice mixing 
ratios. 

• The sensitivity of effective radius 
of snow with respect to snow 
mixing ratio is very high. 

• Most of hydrometeor mixing 
ratios tend to be sensitive to 
themselves, because these 
variables are intent INOUT 
variables in Thompson module. 
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Main input variables

T3D: temperature
TSLB: soil temp
SWDOWN: downward shortwave flux
SMOIS: total soil moisture content
QV3D: water vapor mixing ratio
CHS: surface exchange coefficient for 
heat and moisture
ALBEDO: surface albedo

Sensitivity Analysis of Noah LSM

 Sensible heat flux is sensitive to temperature, soil temperature, and downward shortwave flux.
 Latent heat flux is sensitive to soil moisture content, water vapor mixing ratio, and downward shortwave flux.

Sensible heat flux Latent heat flux

Main input variables (X) Main input variables (X)
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Cloud water from 
boundary layer

Sensitivity Analysis of MYNN PBL

Cloud fraction from 
boundary layer

Tendency of 
temperature

Tendency of 
water vapor

• Cloud water and cloud fraction 
from boundary layer are 
sensitive to Air temperature (th) 
and water vapor mixing ratio 
(qv).

• Tendency variables for 
temperature and water vapor 
are commonly sensitive to 
Density (rho) and turbulent 
kinetic energy (qke).

Main input variables (X) Main input variables (X)
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Sensitivity Analysis of Deng Shallow Cumulus

Effective cloud fraction for radiation Effective cloud water for radiation Tendency of water vapor

Main input variables (X) Main input variables (X) Main input variables (X)

 Effective cloud fraction for radiation is sensitive to temperature (t), water vapor (qv), and cloud water mixing 
ratio(qc).

 Vertical velocity (w) is also confirmed as an important variable for tendency of water vapor.
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Sensitivity Analysis of Unresolved Cloud Fraction

Cloud ice mixing ratio Cloud water mixing ratioCloud fraction

Main input variables (X) Main input variables (X) Main input variables (X)

• Similar to the Deng shallow cumulus scheme, cloud fraction and mixing ratio variables are sensitive to water 
vapor (qv) and temperature (t).
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Down-selection of Variables to Perturb

 Variables selected to perturb based on our sensitivity analysis for 6 parameterizations.
 We perturb the variables inside the parameterizations (i.e. inside the WRF-Solar modules).

n Variable Name in code Location Pert. Type

1 Albedo ALBEDO Inside FARMS %

2 Aerosol optical depth AOD5502D Inside FARMS %

3 Angstrom wavelength exponent Angexp2d Inside FARMS %

4 Asymmetry factor Aerasy2d Inside FARMS %

5 Water vapor mixing ratio QVAPOR Inside FARMS, MYNN, Thompson, Noah, Deng, and Icloud3 %

6 Cloud water mixing ratio QCLOUD Inside FARMS, MYNN, Thompson, and Deng %

7 Ice mixing ratio QICE Inside Thompson %

8 Snow mixing ratio QSNOW Inside FARMS and Thompson %

9 Ice number concentration NI Inside Thompson %

10 Temperature Theta Inside MYNN, Noah, Deng, and Icloud3 %

11 Turbulent kinetic energy QKE Inside MYNN %

12 Soil moisture content SMOIS Inside Noah %

13 Soil temperature TSLB Inside Noah %

14 Vertical velocity W Inside Deng %
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Strategy for Adding Stochastic Perturbations

• The characteristics of the stochastic perturbations for each variable will be specified.
• We have developed WRF-Solar to generate multiple stochastic perturbations.
• The stochastic perturbations for selected variables will be stored in the array (e.g. pert3d(i,k,j,n)).
• We have linked the perturbations in pert3d to the physics and are testing it.

Characteristics of the perturbation

 Std            - Standard deviation  
 Lambda     - Length scale
 Tau            - Time scale
 Cut_off - Cut off tail
 Seed         - Random seed
 Vert_s - 0) 2D or 1) 3D variable
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WRF-Solar Validation using Measurement and NSRDB

GHI

MAE of GHI compared with SURFRAD MAE of GHI compared with NSRDB

• Automatic process of WRF-Solar runs has been developed on NREL HPC (Eagle system).
• WRF-Solar simulations for day-ahead forecasts were run for 2017 covering CONUS.
• The 1-yr simulations of WRF-Solar were evaluated using SURFRAD and NSRDB data.

NSRDB and SURFRAD errors characteristics are similar with NSRDB comparison demonstrating 
smaller errors indicating that the NSRDB can be used for model evaluation.

WRF-Solar baseline case evaluation (1-yr, 9km resolution, RAP analysis for initial and boundary conditions)
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Preliminary Result from WRF-Solar Ensemble Simulations

• The stochastic perturbations 
for 7 variables were 
implemented to the FARMS 
and five WRF-Solar 
ensemble simulations were 
tested.

• The impact of perturbations 
on five ensemble members 
was more pronounced in 
cloudy conditions.

Forecast

Error
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Concluding Remarks

 Tangent linear models were developed for six physics schemes of WRF-Solar using TAF. 

 The validation of the TL codes were strictly verified with linearity tests and the test 
results indicate that TL codes were developed correctly.

 Highest sensitivity variables were identified with the TL method for the WRF-Solar 
modules individually.

 A methodology to stochastically perturb relevant variables for producing probabilistic 
solar forecasts was developed. 

 Optimized ensemble members will be designed through the sets of perturbed variables 
and ensemble calibration.



Funded by:

This presentation may have proprietary information and is protected from public release.

Accomplishments/Products
We have delivered four conference presentations and submitted two abstracts to the 
99th AMS Annual Meeting, the 2019 Joint WRF/MPAS Users’ Workshop, the EU PVSEC 
2019, and the 100th AMS Annual Meeting.

Jimenez, P. A., M. Sengupta, Y. Xie, J. H. Kim, J. Dudhia, and B. Kosovic, “Enhancing WRF-Solar to Provide Probabilistic 
Cloud Optimized Day-Ahead Forecasts”, American Meteorological Society Annual Meeting, Phoenix, USA, Jan 2019.

Kim, J. H., P. A. Jimenez, M. Sengupta, J. Yang, J. Dudhia, Y. Xie, B. Kosovic, “Enhancing WRF-Solar to Provide Solar 
Irradiance Probabilistic Forecasts”, the 2019 Joint WRF/MPAS Users’ Workshop, Boulder, USA, Jun 2019.

Yang, J., M. Sengupta, Y. Xie, P. A. Jimenez, J. H. Kim, “Adjoint Sensitivity Analysis of FARMS for Forecasting Variables of 
WRF-Solar”, the 2019 Joint WRF/MPAS Users’ Workshop, Boulder, USA, Jun 2019.

Yang, J., M. Sengupta, Y. Xie, P. A. Jimenez, J. H. Kim, “Adjoint Sensitivity of FARMS to the Forecasting Variables of 
WRF-Solar”, the 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France, Sep 2019.

Yang, J., M. Sengupta, Y. Xie, P. A. Jimenez, J. H. Kim, “Sensitivity Study for Forecasting Variables of WRF-Solar Using a 
Tangent Linear Approach”, American Meteorological Society Annual Meeting, Boston, USA, Jan 2020. (submitted)

Kim, J. H., P. A. Jimenez, M. Sengupta, J. Yang, J. Dudhia, Y. Xie, “Enhancing WRF-Solar to Provide Solar Irradiance 
Probabilistic Forecasts under All-sky Conditions”, American Meteorological Society Annual Meeting, Boston, USA, Jan 
2020. (submitted)
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Thank you
Contact: Manajit.Sengupta@nrel.gov
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Overview of Tasks (BP1 and BP2)

BP1 BP2
Task 1: Sensitivity Study of WRF variables (completed)
Subtask 1.1: Install and test adjoint compiler
Subtask 1.2: Develop adjoint models for WRF-Solar modules
Subtask 1.3: Study sensitivity of WRF-Solar modules using 
adjoint models

Task 2: Data Acquisition for Model Calibration and 
Validation (completed)
Subtask 2.1: Develop satellite-based validation datasets
Subtask 2.2: Acquire surface-based solar radiation datasets
Subtask 2.3: Acquire meteorological datasets for validation

Task 3: WRF Model Calibration (completed)
Subtask 3.1: Develop WRF-Solar capabilities to enable 
perturbation of variable

Task 4: Data Acquisition for Model Calibration and 
Validation (on-going)
Subtask 4.1: Develop satellite-based validation data sets
Subtask 4.2: Acquire surface-based solar radiation datasets
Subtask 4.3: Acquire meteorological datasets for validation

Task 5: WRF Model Calibration (on-going)
Subtask 5.1: Develop WRF-Solar capabilities to enable 
perturbation of variables
Subtask 5.2: Down-select variables for optimizing ensembles in 
WRF-Solar
Subtask 5.3: Calibrate ensembles

Task 6: WRF Model Calibration
Subtask 6.1: Benchmark improvements in WRF-Solar 
probabilistic forecasts
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