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Background/Current Status

http://www.epri.com/
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Project Motivation: Using Advanced Methods for 
Operating Systems With Uncertainty

Stochastic UC Interval UC Robust UC Dynamic Reserves

Uncertainty Model Scenarios Inter-temporal rates Uncertainty range Requirements

Objective min E{cost} Minimize cost to meet 
central forecast min{max{min f}} Minimize operating 

cost to meet forecast

Security Depends on the
scenarios Inter-temporal ranges Uncertainty Budget Confidence interval

Scalability Low High Variable (high) High
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Can we use other methods to deal with uncertainty/variability?

http://www.epri.com/
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Project Reminder– Three Workstreams
 A Forecasting Work Stream to develop and 

deliver probabilistic forecasts with targeted 
improvements for utility scale and behind-
the-meter (BTM) solar

 A Design Work Stream to identify advanced 
methods for managing uncertainty based on 
results from advanced scheduling tools

 A Demonstration Work Stream to develop 
and demonstrate a scheduling management 
platform (SMP) to integrate probabilistic 
forecasts and scheduling decisions in a 
modular and customizable manner

http://www.epri.com/
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Current Status

Initial Setup Nearly Complete – Expecting to See Results Soon!

 Generally on track, with some contracting/NDA delays

 WS1: Forecasts starting to be delivered and will be 
improved upon in BP2; scenario generation further 
than original planned

 WS2: Model improved up for Hawaii, close for 
southeast utilities (final tweaks and data); methods for 
reserves determined, stochastic UC to come

 WS3: Starting in BP2 will develop demonstration 
capabilities for side by side comparison and decision 
support/visualization tools

http://www.epri.com/


SETTING UP PROBABILISTIC FORECASTS 
FOR UTILITIES

Daniel Kirk-Davidoff, Jiaxin Black, Paulino Tardáguila, UL LLC
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FORECAST SYSTEM SETUP
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UL is setting up operational probabilistic forecast for Duke Energy, HECO and the 
Southern company.  To date, our methodology for these forecast has been a simple 

application of quantile regression tuned from the historical timeseries of our final 
ensemble-derived single-valued forecasts. 



WHERE DOES THE PROBABILISTIC INFORMATION COME FROM?

Probabilistic forecasting in essence is about reviewing 
a history of forecasts, and finding out how reality 
turned out for a set of partitions of the forecast value.   
The interesting part is, how do you partition the past 
forecasts?

Quantile regression:  forecast partitioned by their 
magnitude

Analog ensemble: forecast partitioned by their 
trajectory in time

Machine learning: forecast partitioned by a sort of 
cluster analysis 

UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential. 9
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PROBABILISTIC FORECASTING USING MACHINE LEARNING

SHAP diagrams allows us to inspect the 
dependencies that Machine Learning 
algorithms derive from predictors to 
predictands. 

By contrast with wind generation 
forecasting, the list of NWP variables that 
have a big impact on a machine-learning 
post-processed forecast of solar 
generation is intuitively reasonable.   

In our first round of forecasts we are 
combining multiple variables from several 
NWP models in a single Machine Learning 
process

UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential. 10



PROBABILISTIC FORECASTING USING MACHINE LEARNING

A lot of the heritage of machine learning techniques involves categorical prediction (is the 
image more likely of a cat or a dog)?   This means that many of the popular techniques are 
well-suited to probabilistic forecasts.   

UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential. 11
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SAMPLE SOLAR FORECASTS USING XGBOOST

UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential. 12



FORECAST IMPROVEMENT STRATEGY 

• We plan a series of experiments with machine-learning based methods to determine:
• Optimal number of NWP model variables to incorporate
• Best use of post-processing to normalize probabilities against observed errors 
• Relative merit of 

• including inputs from multiple NWP models in a single machine-learning algorithm
• generating multiple probabilistic forecasts from multiple models
• generating probabilistic forecast from tuned individual NWP-based deterministic models 

• Best strategy to blend short-term (< 3 hours leadtime) data-based forecasts with longer term NWP-
based forecasts

UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential. 13
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Using Probabilistic Forecasts for Operating Reserve 
Determination

Lead: Miguel Ortega-Vazquez

http://www.epri.com/
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Central Reserve Needs
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Categorize
type and source

Historical Assessment

Historical assessment to 
determine the exact 

reserve requirements

Dynamic Reserve Requirement Method

Reserve 
Characteristics

BA process:
• Held
• Released
• Direction
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Incorporation of Probabilistic Forecasts
 System operators rely on point forecasts to 

draw the operating plans of their system
 Probabilistic forecasts provide abundant 

information on uncertainty
 Explore different methods to process the 

probabilistic information
 Adapt the reserve determination method to 

each of the proposed methods
 Two approaches are proposed for reserves:

1. Incorporate probabilistic information via scenarios
2. Incorporate probabilistic information via desired 

confidence interval of forecasted PDF
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1) Scenario Creation
 Create Scenarios via random multivariate 

trials
 Trials’ characteristics:

– Follow the probability distributions of the 
forecasts at each period

– Intertemporal correlation and correlation decay 
between samples

 Method:
– Creation of standard normal multivariate trials
– Induce temporal correlation and correlation 

decay
– Convert to uniformly distributed trials
– Map to forecast distributions
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1) PF via Scenarios
 Sample data:

Probabilistic forecast from UL  

11 probability bins

100 probabilistic scenarios: ρ = 0.80; ω = 0.08

The color intensity is proportional to the probability 
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1) PF via Scenarios (weak intertemporal correlation)
 Sample data:

Probabilistic forecast from UL.  

11 probability bins

100 probabilistic scenarios: ρ = 0.08; ω = 0.08

The color intensity is proportional to the probability 
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Ps

End

Reserves

1) Integration into Operating Reserve Calculator

Probabilistic forecast to 
P-weighted scenarios
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2) PF for a desired CI
 Reserve requirements for a given time period:

Probabilistic forecast from UL  

11 probability bins
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2) PF via CI of the PDF 
 Sample data:

Probabilistic forecast from UL  

11 probability bins

Direct estimation of the up and down reserve 
requirements for a CI of 80%
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2) PF via CI of the PDF 
 Sample data:

Probabilistic forecast from UL  

11 probability bins

Direct estimation of the up and down reserve 
requirements for a CI of 95%
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2) PF via CI of the PDF 
 Sample data:

Probabilistic forecast from UL  

11 probability bins

Direct estimation of the up and down reserve 
requirements for a CI of 99%
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Reserves

2) Integration into Operating Reserve Calculator

Reserve requirements 
for a desired confidence 

interval
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Next Steps for Reserve Requirements

 Finalize integration of probabilistic forecast methods into the reserve determination tool
 Coordination with UL to generate larger sets of data for testing

– System being explored: RTS-GMLC*

 Produce results on test system
 Qualitative analysis of the results
 Assessment using a production cost tool
 Move to larger case study systems (Hawaii first, then Southern and Duke)
 Compare to explicit representation of probability in UC/ED (BP3)

* https://github.com/GridMod/RTS-GMLC

http://www.epri.com/
https://github.com/GridMod/RTS-GMLC
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Case Studies
Lead: Nikita Singhal, Robin Hytowitz, Qin Wang

http://www.epri.com/
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Utility Demonstrations

Southern Company
- Over 1500 MW solar in 2017
- Focus on future cases
- Large interconnected system

Duke Energy
- Focus on Duke Carolinas footprint
- 2 GW installed, > 6 GW in queue
- Demonstrate in parallel with ops
- Sensors for distributed solar forecasts

Hawaiian Electric
- Focus on Oahu - 600 MW solar installed
- Island system 
- Leverage existing EPRI modeling on 

reserve determination

http://www.epri.com/
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PCM Software Abilities: FESTIV

http://www.epri.com/
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HECO: Model Development
 FESTIV model enhancements (i.e., functional and formulation modifications) for 

HECO utilization in operations to enhance modeling accuracy (assists in obtaining 
realistic cost estimates)
– Incorporation of logic around variable startup types (hot, warm, and cold)
– Incorporation of staffing constraints and staff shift time constraints that impact resource 

schedules and operation
– Incorporation of must-run requirements, daily minimum run time requirements, and planned 

resource outage schedules
 Preliminary results (1-week): Increase in system operating costs with added 

modifications/restrictions on resource operation and schedules (benchmark: 10%)
 Current status: 

– Validating the model and results on multiple weeks of data to ensure accuracy
– Dynamic reserve requirement determination, using: 1) deterministic, and 2) probabilistic 

forecasts
– Integration of dynamic reserve requirements within FESTIV

http://www.epri.com/
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Duke Energy: System Data

Load Solar Hydro**

Week-ahead 
(hourly)

√ (Jan17-
May19)

pending √ Fixed to 
actual

Day-ahead 
actual (hourly)

√ (Jan17-
May19)

pending √ (Jan17-
May19)

 Duke system characteristics (DEC and DEP)
– Conventional generation (steam, coal, CC, CTs): approx. 33 GW
– Hydro: 1445 MW
– Pumped Storage Hydro: 2140 MW
– VER*: approx. 2 GW
 Data collected (new forecast and actual data)

* Dependent on the case study scenario – current system shown here

** Hydro schedule deemed as known for scheduling and dispatch purposes.

http://www.epri.com/
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Southern Company: System Data

 Summary of Data
– 287 generators (54 GW capacity)
– 10-minute time-series data for 

Demand, Hydro (including 
pumped-storage) generation, 
solar and wind generation

– Previously used for EPRI 
flexibility analysis work, 
extended here to do full 
simulation

 Test Scenarios
– Low: ~1.5 GW PV capacity
– Medium: ~ 6 GW PV capacity
– High : ~10 GW PV capacity

Maximum 3hr Net Load Ramp at different 
solar levels

http://www.epri.com/
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Utility Operations: PSO Software Abilities

Week-ahead 
to day-ahead*
(hourly SCUC)

Release reserve 
held in prior 

cycle to 
manage 

imbalances

Inputs*: Fuel prices, 
offers, resource mix, TX 

topology, resource 
characteristics, etc. 

Forecasts: 
Demand, VER 

Outputs: Gen. and 
reserve schedule, flows, 

curtailments, prices, 
costs, revenues, reserve 
shortages, load shed, 

etc.

Offer 
updates

Forecast 
updates

Actual
operations 

(hourly SCUC)

*SCUC is run at 7AM on the current operating day due to less stressed conditions from midnight – 7am (ISOs/RTOs typically 
run their DAM at 11AM on the previous operating day or midnight), and run to end of 7 days out

http://www.epri.com/
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Cycle 1 (Weekly)

All units can be 
committed 

Run 7 days with 
forecast outlooks

Cycle 2 (24 hour)

All units can be 
committed 
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Actuals

Jan. 5 Jan. 6 Jan. 7 Jan. 8 Jan. 9 Jan. 10
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Jan. 11

Forecast 6D
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Utility Operations: Scheduling Process

Rolling Horizon

http://www.epri.com/
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Next Steps: Case Studies
 Finalize data and models (BP1)

 Benchmark systems against utility studies/operations (BP1)
– Production costs within agreeable level
– Generation by type, reserve requirements, etc.
– Cycles represent reality closely enough to be insightful

 Add probabilistic forecasts (BP2)
– Dynamic reserves (deterministic and probabilistic)
– Stochastic UC

 Visualization tools/scheduling management platform (BP2/3)

http://www.epri.com/
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Together…Shaping the Future of Electricity

http://www.epri.com/
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Methods to Respond to Variability and Uncertainty…
20

14
•Use of multi-cycle production cost 
simulation
•Demonstration of use of these tools to 
show benefits of advanced reserve and 
scheduling
•Benefits of dynamic vs. static reserve
•Stochastic UC can be feasible on large-
scale systems

20
15

Introduction of 3 needs for reserve and 
how these can be calculated
Reserve through explicit reserve 
requirements vs implicit advanced 
scheduling
Comparison of needs and implicit vs 
explicit reserve scheduling
Impact of scheduling formulation on 
reserve adequacy

20
16

Scale comparison of advanced scheduling 
and dynamic reserve on large-scale 
practical system
Understanding of additional practical 
challenges of advanced scheduling and 
dynamic reserve
Understanding of advanced scheduling and 
dynamic reserve on different scheduling 
processes

20
17

•Translate three reserve needs to 
implementable reserve requirements
•Start to finish dynamic reserve 
requirement proposal for use in BAs
•Study comparison of benefits of dynamic 
reserve and EPRI reserve proposal
• Additional studies complete on Hawaiian Electric 

Company
•Software tool that includes method for 
calculation

20
18

Enhanced method to determine dynamic 
reserve requirements using ANN
Comparison of the ANN method against 
original approach
•Additional studies complete on a utility member
Software tool that includes ANN method 
for calculation 20

19

Work in progress …

Mitigation of potential imbalances due to variability and uncertainty, and 
enhance operating efficiency

http://www.epri.com/
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DynADOR Tool 
 Dynamic Assessment and Determination of Operating 

Reserve (DynADOR)
 Application of EPRI’s research methods by 

development of software tool to determine “smart” 
reserve requirements 

 Can be used in operations or in studies:
– Day-ahead, month-ahead, real-time, input into long-term 

renewable integration study 

 Applicable to different balancing areas types:
– ISO/RTO, utility BA, International TSO, isolated system vs. large 

area

 Validation of results by means of detailed simulation 
studies

http://www.epri.com/
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1) PF via Scenarios (different day)
 Different days:

Probabilistic forecast from UL.  

11 probability bins

100 probabilistic scenarios: ρ = 0.80; ω = 0.08

The color intensity is proportional to the probability 
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1) Scenario Reduction
 Populated sets of scenarios guarantees complying with desired statistical properties
 Computationally intensive for tools that optimize over the complete set
 Reduce to a set with a desired cardinality using k-means
 Grouping scenarios: 1) adding their probabilities, and 2) probability-weighed averages 
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Determine Dynamic 
Reserve Requirements

Historical Assessment

Historical assessment to 
determine the exact 

reserve requirements

Dynamic Reserve Requirement Methods

Reserve 
Characteristics

BA process:
• Held
• Released
• Direction
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1) Intertemporal Correlation
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