

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Enabling Durable High Power Membrane Electrode Assembly with Low Pt Loading

Swami Kumaraguru, General Motors

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Fuel Cell Technologies Office Webinar

August 28, 2019

This presentation is part of the monthly webinar series provided by the U.S. Department of Energy's Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy (EERE). Funding for research, development and innovation to accelerate progress in hydrogen and fuel cell technologies is provided by EERE FCTO.

> During Q&A session: Please type your questions to the chat box. <u>Send to: (HOST)</u>

∨ Chat		×
Candta	European X]
Send to:	Everyone V	Send

General Motors – Fuel Cell Technology

GM & Honda Announce Joint Manufacturing Venture (2017)

https://www.gmhydrotec.com

CONTACT US: FUELCELL@GM.COM

GM

Relevance (Challenges)

Electrode Durability

Higher than expected degradation of Pt-alloy catalysts at high power(a). Poorly understood, complex degradation mechanisms of platinum alloy catalysts and their impact on high power.

Membrane Durability

- Higher than expected membrane degradation with combined chemical & mechanical stresses. Ce redistribution during operation can affect membrane life (b).
- MEA defects such as electrode cracks & fibers (c) from GDL create stress points which can lead to early failure
- □ Are thinner membranes inherently less durable?

Define State of Art MEA

- How do you define a best in class catalysts and properties needed.
- □ What is the role of electrode ionomer and its properties
- Role of ink formulation and its impact catalyst layer structure
- GM
- Can current materials achieve DOE 2020 performance and durability target

https://www.hydrogen.energy.gov/pdfs/review14 /fc087_kongkanand_2014_o.pdf

Approach Enabling SOA MEA

- Systematic screening of various best in class catalysts and ionomers to generate SOA.
- Characterization of both components and integrated SOA MEA conducted to provide fundamental understanding of the material properties and its impact on performance.
 - Role of carbon support on activity
 - Role of carbon support on transport losses
 - Role of lonomer properties
 - Role of Ink properties

Enabling Durability

- Study effect of operating conditions on electrode and membrane durability
- Map degradation stress factors

Develop fundamental models to predict electrode and membrane degradation

Technical Accomplishment: State of Art (SOA) MEA

ltem	Units	2020	2018 Status		
		Target	94º C 250Kpaa	80° C 150kPaa	
Cost	\$/kW _{net}	14	-	-	
Q/AT	kW/°C	1.45	1.45	1.94	
i at 0.8 V	A/cm ²	0.3	0.44	0.30	
PD at 670 mV	mW/cm ²	1000	1275	1000	
Durability	Hours @ < 10% V loss	5000	TBD	TBD	
Mass activity	A/mg _{PGM} at 0.9 V	> 0.44	0.65	0.65	
PGM Content	g/kW rated mg/cm ² _{MEA}	0.125	0.10	0.125	

- The generated SOA exhibit > 1000 mW/cm². Higher temperature and higher pressure polarization curve used to achieve the Q/ΔT target.
- Performance verified in FCPAD (NREL) on 5 cm², 10 cm² and 50 cm² single cells.

ltem	Description	Transport L
Cathode catalyst	30% PtCo/HSC-a 0.1 mg _{Pt} /cm²	0.017 V(RH
Cathode ionomer	Mid side chain 0.9 I/C (EW825)	
Membrane	12 µm PFSA	V(Re⁻)
Anode catalyst	10% Pt/C 0.025 mg _{Pt} /cm ²	0.037
GDL thickness	235 µm	

GM

Electrochemical Testing and Diagnostics

Performance and electrochemical diagnostics were conducted in 5 cm² MEA in differential test conditions. (all measurements in 5 cm² CCM differential cell (3 repeats), unless noted)

Key Measurements (for electrode)

- ECA Measurement
 - $(H_2/N_2 CV, CO stripping^*)$
- Pt particle accessibility
 - CO stripping at different RH**
- Mass activity and Specific Activity
 - I-V curves : 100% O₂ and 100% RH
- Proton transport resistance measurement
 - H_2/N_2 impedance, 80°C[†]
- Bulk and local O₂ transport resistance
 - Limiting current at different Pt loading ^{††}
- H₂/Air Performance
 - I-V curves : 100% RH, 65% RH, 150
 Kpaa, 250 Kpaa
- Modelling Performance ^z
 - 1 D Model

*Garrick et al, JES. 164 (2), F55 (2017)

Padgett et.al, *JES.* **165 (3) F173 (2018)

- [†] Makharia et.al, *JES*, **152** (5), A970 (2005)
- ⁺⁺ Greszler et al, *JES*, **159** (12) F831 (2012)
- ^z Gu et al., *Handbook of Fuel Cells* , Vol. 6, p. 631, John Wiley & Sons (2009)

Technical Accomplishment: Catalyst Selection Catalyst Properties

- Mass activity as high as 0.6 A/mg Pt achieved for PtCo on high surface area carbon supports
- Clear separation in mass activity and ECA between HSC (ex. ketjen black) and MSC (ex. vulcan)
- MSC-a being solid carbon exhibit 100% Pt particles outside carbon support and lowest ECA and activity
- Modified carbon, HSC-e exhibit improved accessibility to Pt particles.
- HSC-a and HSC-g are identical in activity and carbon support properties.

HSC-a HSC-b HSC-e HSC-f HSC-g MSC-a

0

CO Stripping ECSA vs. % Inlet RH

Cataly st	Comments	BET Area (m²/g _{Carbon})	Accessible Pt @ 30% RH	Pt : Co (atomic)	PtCo Size (nm)
HSC-a	High sur. area carbon	~778	57%	3.3	4.0 ± 0.2
HSC-b	High sur. area solid carbon	~797	68%	3.5	3.5 ± 0.1
HSC-e	Modified high surf. area carbon	~778	82%	3.3	4.1 ± 0.2
HSC-f	High surf. area carbon	>780	57%	3.3	TBD
HSC-g	Similar to HSC-a, alt. synthesis	~744	54%	2.7	4.2 ± 0.2
MSC-a	Medium sur. area solid carbon	~214	100%	2.3	6.4 ± 0.6

In-depth characterization of some of the above catalysts can be found in FC144

N. Ramaswamy and S. Kumaraguru, ECS Transactions, 85 (13) 835-842 (2018)

Catalyst Selection Catalyst Layer Diagnostics

- HSC-b and MSC-a exhibit low oxygen transport resistance.
 - The local oxygen transport resistance correlates well with the microporous surface area (<2nm)
 - More investigation needed to understand the impact of micropore surface area and its mechanism towards impact on local oxygen transport resistance.
- HSC-b and HSC-f exhibit higher proton transport resistance.
 - Bulk proton transport resistance correlates well with macro porous (>8 nm) carbon surface area.

Catalyst Selection

Catalyst layer O₂/H⁺ transport properties and diagnostics

For a given catalyst layer

- Local-O₂ transport is dependent on the microporous surface area indicating that the need for O₂ to diffuse through the micropore volume of the carbon black support is limiting cell voltage
- Bulk proton transport is dependent on the macroporous surface area indicating that the ionomer is distribued on the macropore surface of the carbon black support

- Direct correlation between the carbon surface/pore size distribution and the high current density transport losses have been provided
- We need a high surface area carbon with minimal micropore, maximum mesopore and optimal macropore area.

Ionomer Selection Ionomer Side Chain Length and Chemistry							$\begin{array}{c} -+(CF-CF_2)-(CF_2-CF_2)_m]_n\\ \\ O\\ \\ CF_2\\ \\ CF_2\\ CF_2\\$	
Туре	lonomer	EW	A/W	I/C	S.No	Measurement	Site	SO ₃ H
	IONOMEI				1	Viscosity	GM	$\begin{array}{c} - \underbrace{(CF - CF_2) - (CF_2 - CF_2)_m}_n \\ \\ 0 \end{array}$
1	Long Side	950	3	0.90	2	Dynamic Light Scattering	GM	
2	Chain	1100	3	1.04	3	Small angle X-ray	ANL	CF ₂ Medium
3	Medium	729	3	0.69		scattering		CF_2 Side CF_2 Chain
4	Side	825	3	0.78	4	Size exclusion	GM	SO ₃ H
5	Chain	1000	3	0.95	F			$\begin{array}{c} ++(CF-CF_2) - (CF_2-CF_2)_m + n \\ \\ 0 \end{array}$
6		720	3	0.68	0		GM	CF ₂
7		700	0	0.75	6	Grazing Incidence SAXS	LBNL	FC-CF ₃
1	Short Side	790	3	0.75	7	Ionic conductivity	GM	o Long Side
8	Chain	870	3	0.83	8	Zeta Potential	GM	$\begin{array}{c} CF_2 \\ \downarrow \\ CF_2 \\ \downarrow \\ CF_2 \end{array} w/ CF_3$
9		980	3	0.91	9	Particle Size Distribution	GM	⊢́ groups so₃н

- Both side-chain length and backbone length (m) affect EW and chemical structure and hence its <u>phase separation</u> <u>behavior</u>
- Impact of different ionomers with various sidechain chemistry and equivalent weight was tested in differential cell conditions

GM

Ionomer Selection Ionomer Characterization

Dilute ionomer solutions (same ionomer solids% and solvent as inks) were provided to ANL and LBNL for characterization

USAXS measurements at ANL : Lower EW and side chain length result in smaller degree of aggregation and hence smaller rod diameters (better connectivity with more dispersed ionomer aggregates).

GISAXS* at LBNL : Domain orientation and domain spacing increases with EW. For a given EW, sidechain could change distribution of ionomer domains.

*Thin Films of 90-110 nm, spin-cast on Si substrate, annealed

ANL: Deborah Myers, Nancy Kariuki LBNL: Ahmet Kusoqlu

Technical Accomplishment: Ionomer Selection Ink Characterization

- Lower scatterer size, lower interparticle distance, higher viscosity of ionomer solution tend to break down ink agglomerates to lower values as measured by light scattering experiments.
- Does higher PSD in catalyst ink translate to differences in catalyst layer is still TBD. Samples to be assessed at ORNL.
- The current studies imply changes only to the bulk properties of ink and catalyst layer. How it impacts interfacial properties is
 - still TBD. Needs more correlation with GISAXS measurement.

Ionomer Selection Performance Characterization

- Proton conductivity and water uptake measurements were conducted in cast films (~12 um thick)
- Cathode proton transport resistance and cell voltage measurements measured in 5 cm² MEA under differential test conditions.
- EW has the most significant impact on cell voltage. Decrease in proton transport resistance aids performance improvement in high current density.
 - Decrease in oxygen transport resistance also observed with lower EW ionomers.

Technical Accomplishment: Catalyst / Ionomer Interaction Ink solvent Effect

- Factors like alcohol to water ratio exhibit a significant impact on catalyst layer structure and measured electrode diagnostics.
- Water-rich catalyst layers enable a lower R(O₂)local but with trade-off of a higher H⁺-transport resistance in the catalyst layer
- Alcohol-rich inks enable a uniform ionomer distribution whereas either ionomer bands or aggregates are observed with increasing water content

OAK RIDGE

lonomer aggregates (20-100 nm) associated with secondary pores

Ionomer bands (20-100 nm) running parallel to substrate

Uniform ionomer distribution with no aggregation (<20 nm)

H₂-N₂ Voltage Cycling of SOA MEA

Single Factor Studies - Effect of RH

5 cm² CCM MEA (3 repeats). Differential Conditions

Pt Utilization (CO Stripping versus Inlet RH)

- Few single factor studies such as effect of RH was conducted.
- RH has a very strong effect on both ECSA degradation and corresponding H₂-air performance
- Wetter conditions exhibit higher electrode degradation compared to drier condition.
- Pt utilization inside pores increase with degradation.

<u>GM</u>

H₂-N₂ Voltage Cycling of SOA MEA

Single Factor Studies - Effect of RH

Specific Activity

- Effect of RH has a strong impact on both mass activity and ECA.
- No difference in specific activity loss observed beyond 50%RH operation.
- The ECA and mass activity loss also indicate higher Co loss into MEA.
- Resolution on cobalt loss as a function of RH/ cycles - ongoing

EOL BOL EOL Co Pt EOL - 30 K 100% RH

5 cm² CCM MEA (3 repeats). Differential Conditions

Technical Accomplishment: H₂-N₂ Voltage Cycling of SOA MEA

Single Factor Studies - Effect of RH

Atomic% Pt ~ 84.5 Co ~ 15.5

Atomic% Pt ~ 95.1 Co ~ 4.9

Atomic% Pt ~ 98%

19

Characterization of Voltage Cycled MEAs

- PSD and composition measurements are the key inputs to the model.
- PSD of a fresh electrode, electrode after break in and electrode after 30 K voltage cycles were obtained at three different locations, namely near the membrane, center of electrode and near GDL is quantified.

The University of Texas at Austin

Voltage Cycling of SOA MEA

Transport Losses

5 cm² CCM MEA. Differential Conditions

- Marginal increase in proton transport resistance at very dry condition observed. Possibly from leached Co²⁺.
 - Exact quantification of proton transport during operation is still unclear. Could be higher due to higher exchange of proton conducting sites.
- Marginal decrease in RO₂ local (µ-pore) observed
 - Possible opening of pores as observed from the increased accessibility of pores in CO stripping measurements (at low RH)

Technical Accomplishment:

H₂-N₂ Voltage Cycling of SOA MEA Multifactor DOE

- Single factor experiments can be misleading at times.
- Understanding of the interaction of factors is key to define operating conditions favorable for electrode and membrane degradation.
- Exploring initial design of experiments focused on temp, RH, lower and upper potential limit, upper potential hold time.
- Design of experiment approach was utilized (18 runs).

Construct Pt and Co Dissolution Models

Model Framework

Membrane Degradation

Single Stress Failure Modes

 Factors affecting membrane degradation in real life operation that involves simultaneous chemical and mechanical stress

C.S. Gittleman, F.D. Coms, Y-H Lai, Modern Topics in Polymer Electrolyte Fuel Cell Degradation, Elsevier, 2011, pp. 15-88

Combined Chemical-Mechanical HAST

Goal: develop a highly accelerated stress test to evaluate membrane durability in a realistic fuel cell environment (no dry inlets, no OCV) (a)

- 70, 80 & 90°C/30%Rh_{in}, 0.05 1.2 A/cm², (distributed measurements)
- Constant flow, Co-flow

1.5

1.4

0.1

400

- Current an Temp Distribution tool used to measure local environment
 - Collect 100 membrane T & HFR profiles vs. time
- In-situ diagnostics: Shorting resistance, diffusive crossover (membrane thinning), and convective crossover (pinhole formation) mapping
- Deep RH cycling at the outlet \rightarrow High Mechanical Stress ٠
- Inlet stays relatively dry throughout \rightarrow High Chemical Stress

1.4

1.2

1.2 1.0 1.0 0.8 0.8 0.4 Current (A/cm²)

0.2

0.0

930

Outlet

910

0

Outlet

Inlet

870

890

Y.H. Lai, Journal of The Electrochemical Society, 165 (6) F3217-F3229 (2018)

Combined Chemical-Mechanical HAST

Membrane fails by chemical degradation in the area with highest mechanical stress (deep RH cycling) but lowest chemical stress.

- Ce moves from active to inactive region
- Result led to two new work streams
 - Development of model for Ce transport during operation
 - Diffusion (slow), Convection (faster) & Conduction (fastest)
 - Ex-situ measurement of impact of mechanical stress on chemical degradation (just underway)

 What happens when we run a HAST test w/o Ce stabilizer?

Combined Chemical-Mechanical HAST – Ce Effect

2

3

4

7

10

12

13

11

3

4

5

7

12

13

12

11

- MEA w/ Ce lasts 2X longer than Ce free MEA in HAST tests
- In automotive drive cycle, MEA w/ Ce last 10X longer than Cefree MEA

- Both w/ & w/o Ce failure crossover first observed in outlet region with high RH cycling •
- Crossover occurs in half the time w/o Ce
- While Ce depletion may contribute to earlier failure in outlet region, it is not the only reason → some other mechanism is at play

Combined Chemical-Mechanical HAST

Effect of Operating Temperature

Diffusive X-over Maps

- Temperature is the key accelerating factor for membrane degradation. Almost 8X difference in time to failure noticed with 20°C reduction in temperature.
- Even though time to failure is strongly dependent on temperature, the failure location (outlet) and failure mode (thinning or diffusive crossover) is similar at all temperatures.

- Relatively rapid movement of samples 1 and 4 (nearest gradient) from high to low RH
- Diffusion of samples 3 and 4 are consistent with RH values of the respective chambers
- Data fit to determine convection coefficient (k) as f(t, RH) see next slide

F.D. Coms and A.B. McQuarters, ECS Transactions, 86 (13) 395-405 (2018)

<u>GM</u>

Technical Accomplishment: Ce Transport Model

Ce Migration

Does Ce³⁺ Leave the Cell?

- Clearly Ce³⁺ is highly mobile, but can it leave the cell?
- Ce³⁺ is tightly ion paired to the polymer sulfonate groups and <u>cannot leave</u> the ionomeric phase unless accompanied by an anion (or three). F⁻ is already spoken for as it leaves as H-F or ion pair
 - Exhaust pH correlates with FRR. High FRR \rightarrow decreased exhaust pH
- ICP analysis of exhaust water finds no traces of Ce³⁺ to the detection limit of 50 ppt!
- In cases of <u>gross chemical degradation</u> where sulfonate fragments are leaving the membrane (i.e. Fe contamination), Ce³⁺ could leave the cell. By then, the battle is already lost. Ce³⁺ loss is the <u>effect</u>, not the <u>cause</u> and the MEA is probably already dead.

Impact of Thickness on Membrane Chemical Degradation

Relative humidity of the H_2O_2 vapor stream can be readily adjusted to provide a range of reaction conditions

H₂O₂ Vapor Cell Test Set-up

Impact of Thickness on Membrane Chemical Degradation

- Both ex-situ and in-situ tests are being conducted to assess impact of membrane thickness and gas crossover on durability
- Ex-Situ H₂O₂ vapor tests of membranes of varying thickness and Ce³⁺ content (Giner)
 - H₂O₂ vapor test do not address gas crossover impact intrinsic impact of thickness only
- In-Situ chemical durability (OCV) tests
 - Addresses impact of gas crossover & thickness

- 90°C, 30ppm H_2O_2 vapor cells tests
- No significant thickness impact when crossover is not considered
- Significant suppression of FRR at dry conditions with Ce

We have started a design of experiments using single cell
OCV tests at 90°C (fixed Ce loading of 2%)
DOF will isolate the impact of gas crossover of

- DOE will isolate the impact of gas crossover of degradation rate
- Measuring Fluoride release, MW loss & carboxylate increase to isolate unzipping & chain scission mechanisms

Thickness (µm)	RH	Cathode P (kPa)	ΔP (kPa)
8	30%	150	-20
12	60%	200	20
20	90%	250	60

Impact of Local Shorting on Membrane Degradation

- Method developed to create and measure soft shorts
 - Induce shorts by incrementally increasing cell compression (95°C, ambient RH)
 - Use current distribution board to maximize spatial resolution, and sensitivity
 - In a single cell we can get multiple shorts with a range of resistances
- GOAL: Create multiple shorts <200 Ω in different regions of the MEA

Shorting	g Curren	m2)					
0.0005	0.0003	0.0002	0.0002	0.0001	0.0001	0.0001	-0.0004
0.0008	0.0004	0.0003	0.0002	0.0002	0.0002	0.0001	0.0002
0.0005	0.0004	0.0004	0.0004	0.0004	0.0003	0.0002	0.0003
0.0003	0.0005	0.0007	0.0009	0.0007	0.0005	0.0004	0.0004
0.0003	0.0005	0.0010	0.0021	0.0013	0.0008	0.0007	0.0007
0.0002	0.0004	0.0008	0.0016	0.0014	0.0013	0.0013	0.0012
0.0002	0.0003	0.0005	0.0008	0.0012	0.0021	0.0026	0.0021
0.0001	0.0002	0.0004	0.0007	0.0013	0.0027	0.0048	0.0030

- Graphite plate and GDL allows the shorting current to spillover to multiple distribution segments
- The circuit board measures a smeared current density map
- Deconvolution scheme used to recover the current from the individual shorts and convert to resistance

De-conv	oluted	Shortin	g Resis	tance (S	2)		
159748	15963	10145	26213	11699	2042	479	312
330	2711	2216	7601	7073	1554	6535	606
5475	2042	47876	2121	1675	4608	1664	9613
2947	1799	4768	46524	6002	2635	862	67857
2269	2790	21831	92	1619	975	479	5076
2141	2103	1223	237	6866	6017	935	872
11220	2551	1116	2395	1078	175	2599	5817
1950	6010	3075	4387	5878	1251	57	2957

Impact of Local Shorting on Membrane Degradation

- Induce shorts by incrementally increasing cell compression (95°C, ambient RH)
 - Use current distribution board to maximize spatial resolution, and sensitivity
 - In a single cell we can get multiple shorts with a range of resistances
- Run accelerated membrane durability tests to see if local shorts accelerate rate of local degradation
 - Use segmented cell to track progression of local shorting and gas crossover

- There is no clear correlation between local shorting and increase in crossover.
 - Lack of correlation unexpected based on high modelled local temperature
- Plan to repeat tests while running to failure

Impact of Local Shorting on Membrane Degradation

Goal: Develop a non-destructive method to image shorting location in an MEA

- Pre-shorted MEAs sent to LBNL instead
- Location of short is identified by the distributed resistance measurement as well as thermal imaging.

CL cracks observed

- Initial study indicate, X-ray CT resolution good enough to visualize shorts
- X-ray CT measurement of current sample complete, analysis in progress.
- If results look good, plan is to run HAST like test on the pre-shorted MEA, followed by imaging again.

Summary

SOA MEA

- SOA MEA exceeding (1.25 W/cm²) DOE targets achieved by systematic selection of catalyst, ionomers and membrane
- Oxygen transport resistance is dependent on micropore surface area (<2 nm)
- Proton transport resistance is dependent on macropore surface area (>8 nm)
- Performance impact dominated by equivalent weight of the ionomer.

Electrode Durability

- ECSA loss decreases with decrease in operating RH
- > 35% reduction in ECA loss demonstrated with reduction in RH from 100% to 70%.

Membrane Durability

- Combined chemical/mechanical highly accelerated stress (HAST) was developed.
- Deep RH cycling at outlet results in increased crossover for both Ce containing and Ce free MEAs
- Ce³⁺ migration studies indicate Ce³⁺ movement via convection is the most dominant. Corresponding model was drafted.
- Method developed to generate and quantify local resistance of membrane shorts.

Future Work

- Execute Multifactor operating conditions DOE using H₂N₂ Voltage cycling.
 - ECA, SA, CO stripping, RO₂-local (limiting current), V loss etc.(NREL)
 - MEA characterization including EPMA, TEM, EELS mapping etc. (ORNL, UT Austin).
- Obtain ex-situ dissolution rates of Pt, Co and elucidate growth mechanisms (ANL/NREL).
- Predictive model based on the experimental data with the fundamental understanding of degradation mechanisms.
- Continue fundamental studies to isolate impact of stress factors on membrane degradation.
 - Develop ex-situ method to quantify the impact of mechanical stress on chemical degradation
 - Accelerated stress tests of SOA and pre-shorted MEAs in segmented cells combined with visualization techniques such as XRF & X-ray CT (LBNL).
 - Effect of membrane thickness and gas crossover using single cell OCV tests at 90°C. (Giner)
- Refine model for in-plane Ce migration during transient fuel cell operation.
- Develop combined chemical/mechanical membrane degradation model based on experimental data and the fundamental understanding of degradation mechanisms.

Acknowledgements

DOE

- Greg Kleen (Technology Manager)
- Donna Ho (Technology Manager)
- Dimitrios Papageorgopoulos

General Motors

- Srikanth Arisetty
- Nagappan Ramaswamy
- Vinaykumar Konduru
- Ratandeep Kukreja
- Craig Gittleman
- Mark F. Mathias
- Yeh-Hung Lai
- Frank Coms
- Anusorn Kongkanand
- Ruichun Jiang
- Ken Rahmoeller
- Ashley McQuarters
- Tim Fuller
- Mehul Vora
- Balsu Lakshmanan
- Wenbin Gu

GM

- Joe Ziegelbauer
- Mohammed Atwan

<u>Giner</u>

- Cortney Mittelsteadt (sub-PI)
- Hiu Xu
- Zach Green

Univ of Texas, Austin

- Prof. Yuanyue Liu (sub- PI)
- Prof. Paulo Ferreira

FC-PAD

- Rod Borup
- Mukund Rangachary
- Adam Weber
- Ahmet Kusoglu
- Lalit Pant
- Deborah Myers
- Nancy Kariuki
- Rajesh Ahluwalia
- Joshua Wang
- Karren More
- KC Neyerlin

Technical Accomplishment: Catalyst / Ionomer Interaction Electrode Optimization

 3 Catalysts and 3 lonomers have been downselected based on the catalyst and ionomer screening experiments

DoE with three factors (3¹)(3¹)(3¹)

Catalysts (3)	lonomers (3)	SO ₃ H Molality (mmol kg ⁻¹) (3)
HSC-a	LSC EW950	25.3
HSC-b	MSC EW825	31.6
HSC-g	SSC EW790	37.9

- Combination of HSC-a with MSC ionomer provides the most robust combination across various operating conditions. HSC-a also exhibit higher activity retention (from FC144)
- HSC-b cathode with SSC ionomer combination provides benefits under low pressure and wet conditions but severely falls below target at dry operating conditions evens with a highly conductive ionomer
- HSC-g does show improvements under high pressure in combination with low EW SSC ionomers but severely falls short at other conditions

5 cm² CCM MEA (3 repeats). Differential Conditions

Question and Answer

• Please type your questions to the chat box. Send to: (HOST)

∽ Chat			×
Send to:	Everyone	\sim	
Enter d	hat message here		Send

Swami Kumaraguru Swami.Kumaraguru@gm.com

Eric Parker DOEFuelCellWebinars@ee.doe.gov

Gregory Kleen Gregory.kleen@ee.doe.gov

Sign up to receive hydrogen and fuel cell news and updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter