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• Founded: 1943 for the Manhattan Project
• Location: Los Alamos, New Mexico
• $ 2.6B Budget, ~ 10,000 employees

Los Alamos National Laboratory



Commercial Fuel Cell Vehicles
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Toyota Mirai
MSRP: $58,365

Honda Clarity Hyundai Nexo
Lease $399/mo.
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Introduction - Polymer Electrolyte Fuel Cell
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• Slow O2 reduction on the cathode is the main barrier to increased performance
• Platinum alloy catalysts (PtCo, PtNi) are used to improve O2 reduction kinetics, 

but cost and durability are issues
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Cost Reduction
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Fuel cells need to be cheaper!
Strategies:
1. Better catalyst  less Pt  reduced cost
2. Higher performance  smaller fuel cell  reduced cost

D. Papageorgopoulos, FCTO Annual Merit Review., 2019
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Relevance
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Objectives
• Design active and durable nanoparticle ORR catalysts based on fully-ordered 

intermetallic alloys on highly graphitized nitrogen-doped carbon supports
- Binary and ternary alloys of Pt with Co, Ni, other base metals
- Project will avoid Fenton-active metals 
- Commercial supports used initially; N-doped C supports later

• Demonstrate catalysts in high-performance, durable MEAs and scale up to 50 cm2

• Mass activity > 0.44 A/mgPGM @ 0.9 ViR-free

• <40% mass activity loss after catalyst AST
• <30 mV loss at 0.8 A/cm2 after catalyst 

AST
• PGM total loading < 0.125 mg/cm2

• Power density > 1 W/cm2

• <40% mass activity loss after support AST
• <30 mV loss at 1.5 A/cm2 after support 

AST

Project Targets:



Approach: Catalyst Structures
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Ordered intermetallic catalysts
Primary material set:

1. L10-MPt (also known as face-centered tetragonal) M = Co, Ni, 
other transition metals

2. L10-M1M2Pt (ternaries)
Alternative materials (risk mitigation):

1. L12 structures (Pt3M)
2. Doping with other elements
3. Other intermetallics

Adapted from Johnston-Peck et al., Nanoscale, 2011, 3, 4142 



Approach: Synthesis
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• Synthesize intermetallic nanoparticles 
(CoPt, NiPt, ternaries)

- Prepare fully-ordered cores to stabilize 
base metal

- Further protect core with Pt skin
- Use theory and computation (DFT, 

machine-learning techniques) to guide 
nanoparticle design

• Support nanoparticles on Fe-free, N-doped 
graphitic carbon

Use atomic-level ordering to increase performance and durability of Pt-based catalysts



Approach: Characterization and Testing

July 31, 2019 Advanced Electrocatalysts Webinar 10

• Integrate supported nanoparticles into MEAs, test initial 
performance and durability

• Perform MEA diagnostics (impedance, limiting current 
methods) to characterize loss mechanisms and guide electrode 
design

• Perform initial and post-mortem characterization (XRD, XAS, 
XRF, SEM-EDS, TEM, STEM-HAADF, STEM-EDS) to guide 
synthetic work and determine effect of structure and 
composition on performance and durability

• Scale-up and validate MEA performance (5 cm2 50 cm2)
• Scale-up catalyst synthesis (gram-scale batches)

Use atomic-level ordering to increase performance and durability of Pt-based catalysts



Approach: L10-MPt Synthesis
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1. Brown: wet chemical synthesis of alloy 
nanoparticles in high-boiling solvents, 
followed by thermal annealing to create 
ordered structures (highest control, 
lowest scalability)

2. Penn: microwave synthesis and rapid thermal 
annealing (high risk, but may provide 
enhanced ordering, improved scalability)

3. LANL: seed-mediated synthesis by metal salt 
impregnation in Pt/C, followed by annealing 
to produce ordered structures (lowest control 
but highest scalability)

Brown synthesis:

Penn synthesis:

LANL synthesis:



Approach: N-doped Carbon Supports
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300 nm

Hydrogel Precursor

Carbon

Key attributes:
• N-doped - improved dispersion and stabilization of nanoparticle catalysts
• Highly graphitized - improved durability
• Fe-free - avoids Fenton degradation



Accomplishments and Progress: DFT Computation
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A
B C D E F

G

• Bulk diffusion barrier correlates strongly with 
potential energy difference between states A and D

• L10 intermetallics show much larger diffusion 
barriers than fcc Pt

• Results suggest that alternative mechanisms (e.g., 
oxygen place exchange) are more important in 
controlling base metal leaching – work is ongoing 
in this area



MEA Testing Protocols
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Mass Activity: 15 min hold at 0.9 V

H2/O2, 500/1000 sccm; 80°C; 100% RH; 
150 kPaabs; cathode: 0.1 mgPt/cm2 ; 
anode: 0.1mgPt/cm2

0.6V

0.95V
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2.5 s

1.25 s

Catalyst AST: square wave 
between 0.6 and 0.95 V 
with 0.5 s rise time

0.5 s 0.5 s

H2/N2, 200/200 sccm; 80°C; 100% RH; 
150 kPaabs; cathode: 0.1 mgPt/cm2 ; 
anode: 0.1mgPt/cm2

0.6V

1.0V

1.5V

1.0 s

Support AST: triangle 
wave between 1.0 
and 1.5 V at 500 mV/s



MEA Preparation and Testing
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All MEA testing reported here uses MEAs made using standard techniques:
• Water/n-propanol inks, with catalyst and ionomer dispersed by sonication, and 

deposited by ultrasonic spray
• I/C = 0.9 for high surface area carbon or 0.5 for Vulcan carbon
• GDLs are 29BC (SGL), compressed by 20-25% 
• Membranes are Nafion 211
• Testing used 5 cm2 differential cells at 500/2000 sccm anode/cathode
• Target electrode loading 0.1 mg Pt/cm2 (some sample-to-sample variation as reported 

in the test results)
• All testing was performed at 150 kPaabs and 100% RH unless noted otherwise
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Large Particle L10-PtCo
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Large Particle L10-CoPt with Pt Shell
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Loaded on 
carbon,
annealed at 
650oC
for 6 h in 5% 
H2/Ar

9 nm Co49Pt51
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 6 h annealing, coercivity = 7.1 kOe
 1 h annealing, coercivity = 5.1 kOe

• XRD, coercivity
measurements, and 
TEM all demonstrate 
high degree of ordering

• Pt shell (~2 atoms thick) 
after acid leach
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After acid leach:

Superlattice peaks 
demonstrate 
ordered structure
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Large Particle L10-CoPt with Pt Shell
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AST at 60°C, ORR measured at 25 °C 

Advanced Electrocatalysts Webinar



Large Particle L10-CoPt@Pt: MEA Testing
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• BOL mass activity: 0.56 
A/mgPGM (Target: >0.44 
A/mgPGM)

• Post-30K cycle mass activity 
(measured at 15 min): 0.45 
A/mgPGM

• Loss after 30K cycles: 20%
(Target: <40%)

• Loss at 0.8 A/cm2 after 30K 
cycles: 69 mV (Target: <30 
mV), but mostly due to 
flooding

• Power density: 0.58 and 
0.73 W/cm2 at 150 and 250 
kPa (Target: 1 W/cm2)
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150 kPaabs, 500/1000 sccm H2/air, 5 cm2, 
0.105 mgPt/cm2 cathode, Nafion 211
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Large Particle L10-CoPt@Pt: XRD and XRF
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• XRD superlattice peaks are slightly 
smaller after 30K cycle AST, 
suggesting surface leaching 

• Insignificant shift in peak position, 
indicating lattice established by 
ordered core remains unchanged

• XRF indicates composition change 
(Pt0.61Co0.39 Pt0.71Co0.29), 
indicating 36% of Co was lost
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BOL Catalyst Powder
After 30K Cycle AST

Superlattice peaks still present 
after AST, though support and 
ionomer overlap with some peaks
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Wide-view 
XRD pattern

Magnified 
XRD pattern
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Brown L10-CoPt/Pt: STEM
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• STEM-EDS shows ~1 nm 
Pt shell surrounding 
Pt50Co50 core after AST 
(total particle 
composition Pt70Co30)

• HAADF-STEM shows 
highly ordered core 
remains after AST, coated 
with a ~0.7-1.0 nm Pt 
shell (3-4 atoms thick)

Key conclusions:
• Ordered core remains intact even after AST
• Co leaching occurs only from surface, forming Pt shell 

that protects particle interior from further leaching
• Pt shell is too thick for significant ligand enhancement 

after AST, but kinetic enhancement due to strain 
remains even after 30K cycles

HAADF-STEM after 30K cycle AST in MEA

STEM-EDS after 30K cycle AST in 
MEA

J Li et al., Joule 2018

Advanced Electrocatalysts Webinar



Large Particle L10-CoPt@Pt Status vs. Targets
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• High mass activity 
at BOL; only 20% 
loss after AST

• Excellent ECSA 
retention (but low 
ECSA from the start)

• Degradation at 0.8 
A/cm2 due to 
increased flooding 
after AST

• High power 
performance is too 
low – probably due 
to thick electrode 
(~25 µm)

Units Measured Target
Mass Activity A/mgPGM 0.56 0.44
Mass Activity after Catalyst AST A/mgPGM 0.45 0.264
Degradation at 0.8 A/cm2 (Catalyst AST) mV 69 30
Current Density at 0.8 V A/cm2 0.32 0.3
Power at 0.67 V, 150 kPaabs W/cm2 0.58 1
Power at 0.67 V, 250 kPaabs W/cm2 0.73 1
Cathode PGM Loading mg/cm2 0.105 0.125
Robustness, Cold 0.64 0.7
Robustness, Cold Transient 0.68 0.7
Robustness, Hot 0.19 0.7
ECSA m2/gPt 26
ECSA after Catalyst AST m2/gPt 23
Crystallite Size (XRD) nm 7.8
Crystallite Size after Catalyst AST nm 9.6
Particle Size (TEM) nm 8.9
Particle Size after Catalyst AST nm 8.7
Composition % Pt61Co39
Composition after Catalyst AST % Pt71Co29

Advanced Electrocatalysts Webinar
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Small Particle L10-PtCo

Advanced Electrocatalysts Webinar



L10-CoPt@Pt/Vulcan
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L10-CoPt@Pt/Vulcan
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2 nm2 nm

L10-CoPt@Pt/Vulcan (#19g)
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BOL Powder After 30K cycles in MEA

Ordered particles 
remain after AST



A1-PtCo/Vulcan, BOL
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A1-PtCo/Vulcan, EOL
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L10-PtCo@Pt/Vulcan, BOL
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L10-PtCo@Pt/Vulcan, EOL
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Accomplishment: Small L10-PtCo Particles
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BOL Catalyst After 30K cycles in MEA

Particle structure is similar before and after 
AST: Pt shell around L10-PtCo core

Advanced Electrocatalysts Webinar

Superlattice
peaks still 
present after AST

Superlattice
peaks show 
L10 ordering



L10-PtCo/Vulcan: Fuel Cell Testing
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Units Measured Target
Mass Activity A/mgPGM 0.60 0.44
Mass Activity Loss [1] % 40 40
Degradation at 0.8 A/cm2 [1] mV 26 30
Current Density at 0.8 V A/cm2 0.41 0.3
Power at 0.67 V, 150 kPaabs W/cm2 0.89 1
Power at 0.67 V, 250 kPaabs W/cm2 1.10 1
PGM Loading [2] mg/cm2 0.106 0.125
Robustness (cold) 0.94 0.7
Robustness (cold transient) 0.91 0.7
Robustness (hot) 0.92 0.7
[1] 30K square wave cycles, 0.6-0.95 V [2] Cathode

Advanced Electrocatalysts Webinar

LANL 
FCC-PtCo

Commercial
FCC-PtCo

LANL 
L10-PtCo

BOL Co% 48% 22% 27%
EOL Co% 12% 7% 17%

High durability of L10 ordered PtCo is due to decreased Co leaching –
L10-PtCo has higher Co content than FCC-PtCo after 30K cycle AST

L10-PtCo@Pt/XC-72 catalyst meets or 
approaches DOE catalyst and MEA targets

0.106 mgPGM/cm2, N211, 
150 kPaabs, 80°C, 100%RH

LANL L10-PtCo/XC-72

ECSA (CO stripping):
62 m2/g (BOL)
40 m2/g (after 30K cycles)



Accomplishment: Ternary L10 Development
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• DFT results suggest adding a 3rd component (e.g. Ni) to L10-PtCo 
could provide near-optimal O/OH binding energy

• XRD shows Co:Ni:Pt = 1:1:2 gives good ordering
• Based on DFT and XRD, ternary L10-CoNiPt looks promising



L10-CoNiPt: MEA Testing
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• RDE performance 
promising, but initial 
MEA results lower than 
expected

• Ternary L10 development 
still a work in progress

Units Measured Target
Mass Activity A/mgPGM 0.33 0.44
Mass Activity Loss [1] % 40
Degradation at 0.8 A/cm2 [1] mV 30
Current Density at 0.8 V A/cm2 0.23 0.3
Power at 0.67 V, 150 kPaabs W/cm2 0.64 1
Power at 0.67 V, 250 kPaabs W/cm2 1
PGM Loading [2] mg/cm2 0.091 0.125
[1] 30K square wave cycles, 0.6-0.95 V

[2] Cathode

L10-CoNiPt

0.09 mgPGM/cm2, N211, 
150 kPaabs, 80°C, 100%RH



Buffalo L12-CoPt
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• Heat treatment of Co ZIF, followed by Pt 
impregnation and additional heat treatment, 
produces ordered PtCo on N-doped carbon

• High fuel cell performance in unoptimized MEA

100% RH, 500/1000 sccm H2/air, 5 cm2

0.129 mgPt/cm2 cathode, Nafion HP

XX Wang et al., Nano Letters 2018Advanced Electrocatalysts Webinar



Buffalo Mn-Hydrogel Supports
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• Polymer hydrogels carbonized 
in presence of Mn have highly 
graphitic structure

• Graphitic structure prevents C 
corrosion, enhancing fuel cell 
stability

Advanced Electrocatalysts Webinar



Accomplishment: Mn-Hydrogel Supports
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• Graphitic structure reduces 
corrosion

• Hydrogel supports meet or 
approach durability targets 
with pure Pt

• Need more active catalyst 
for performance targets 

Advanced Electrocatalysts Webinar

Units Measured Target
Mass Activity A/mgPGM 0.18 0.44
Mass Activity Loss [1] % 39 40
Degradation at 1.5 A/cm2 [1] mV 31 30
Current Density at 0.8 V A/cm2 0.14 0.3
Power at 0.67 V, 150 kPaabs W/cm2 0.49 1
Power at 0.67 V, 250 kPaabs W/cm2 1
PGM Loading [2] mg/cm2 0.13 0.125
[1] 5K triangle wave cycles, 1.0-1.5 V

[2] Cathode

0.1 mgPGM/cm2, N211, 
150 kPaabs, 80°C, 100%RH

5K cycles, 1.0-1.5 V

Qiao et al., Energy Environ. Sci., 2019, Accepted 



L10-PtCo/Hydrogel
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Hydrogel-based support enables improved 
dispersion of 2-4 nm L10-PtCo 

Small L10 ordered PtCo

PtCo particles on 
folded graphene sheets



L10-PtCo/Hydrogel
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Units Measured Target
Mass Activity A/mgPGM 0.79 0.44
Mass Activity Loss [1] % 37 40
Degradation at 0.8 A/cm2 [1] mV 31 30
Current Density at 0.8 V A/cm2 0.34 0.3
Power at 0.67 V, 150 kPaabs W/cm2 0.77 1
Power at 0.67 V, 250 kPaabs W/cm2 1
PGM Loading [2] mg/cm2 0.108 0.125
ECSA m2/gPt 72
ECSA after Catalyst AST m2/gPt 37
[1] 30K square wave cycles, 0.6-0.95 V [2] Cathode

• Combination of LANL PtCo
technology and Buffalo 
support technology produces 
extremely high mass activity 
and good durability

• L10-PtCo on hydrogel support: 
small, monodisperse, ordered

• MEA optimization needed to 
improve power density

Primary goal of support work is to improve performance and durability through better 
dispersion of intermetallic nanoparticles. Meeting support durability targets is secondary goal.

0.108 mgPGM/cm2, N211, 
150 kPaabs, 80°C, 100%RH

30K square wave 
cycles, 0.6-0.95 V



L10-PtCo Scaleup
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• Initial synthesis: 100-200 mg 
batches

• Gram-scale synthesis began 
Jan 2019 

• Initial gram-scale synthesis 
shows similar performance 
(slightly lower)

• Further optimization of 
scaled-up synthesis underway

Intermetallic L10-CoPt developed in this project is compatible with 
multiple carbon supports (XC-72, Ketjen, and hydrogel-based 
carbons) and has high performance in large and small batches

0.1 mgPGM/cm2, N211, 
150 kPaabs, 80°C, 100%RH



Project Status
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Units
L10-PtCo/

XC-72
L10-PtCo/
Hydrogel Target

Mass Activity A/mgPGM 0.60 0.79 0.44
Mass Activity Loss [1] % 40 37 40
Degradation at 0.8 A/cm2 [1] mV 26 31 30
Current Density at 0.8 V A/cm2 0.41 0.34 0.3
Power at 0.67 V, 150 kPaabs W/cm2 0.89 0.77 1
Power at 0.67 V, 250 kPaabs W/cm2 1.10 1
PGM Loading [2] mg/cm2 0.106 0.108 0.125
Robustness (cold) 0.94 0.7
Robustness (cold transient) 0.91 0.7
Robustness (hot) 0.92 0.7
[1] 30K square wave cycles, 0.6-0.95 V [2] Cathode

• L10-PtCo/XC-72 meets most DOE catalyst and durability targets; further 
work on power density underway

• L10-PtCo/Hydrogel provides path to higher mass activity
• L10 ordering improves durability by decreasing Co leaching; ordering is 

retained even after 30K cycle AST in MEA



Future Work
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• Increase high-current performance and durability 
through improved L10-PtCo dispersion – to be achieved 
via improved control of synthesis, improved N doping in 
supports

• Extend gram-scale synthesis to multi-gram batches that 
match performance of small batches

• Perform MEA optimization on the two most promising 
catalysts (small particle L10-CoPt/XC-72 and L10-
CoPt/Hydrogel Carbon)

• Scale up MEA testing from 5 cm2 to 50 cm2



Summary
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• Intermetallic PtCo catalysts provide high activity and 
durability in MEAs

• Ordered catalysts with Pt skins can keep high Co content even 
after durability testing

• L10 ordering still apparent even after 30,000 voltage cycles
• Best catalysts can meet DOE performance and durability 

targets
• MEA testing is critical to evaluate ORR catalysts!
• We collaborate to test promising catalysts – contact me at 

spendelow@lanl.gov
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Question and Answer

• Please type your questions to the chat box. Send to: (HOST)
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Thank you

Jacob Spendelow
spendelow@lanl.gov

Nancy Garland
Nancy.Garland@ee.doe.gov

Eric Parker
DOEFuelCellWebinars@ee.doe.gov

Sign up to receive hydrogen 
and fuel cell news and updates 

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter
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