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ENERGISE ProDROMOS Project

Programmable Distribution Resource Open Management Optimization System
(ProDROMOS)!

Create an Advanced Distribution Management System (ADMS) that:
= captures distribution circuit telemetry

= performs state estimation, and

= jssues optimal DER setpoints based on PV production forecasts.

Implemented on a live power system using 684kW PV system

Compared three control strategies: autonomous, central optimization, distributgs

optimization

Adopted by Connected Energy (ADMS vendor)

Prodromos is Greek for "forerunner" and the prodromoi were a light cavalry
army unit in ancient Greece used for scouting missions.

Real-Time Voltage
Regulation Power

Simulations

Power Hardware-in-the-
Loop Voltage Regulation
Power Simulations

Field Demonstrations on
Live Power Systems

Done!

Sandia
ﬂ DPAL-RT National
= TECHNDOLOGIES Laboratories




IMPLEMENTATION

Opal-RT Communication Interfaces

PMU C37.118 to state estimator
Opal DataBus Interface receives P/Q
values for EPRI PV Simulators and
transmits bus voltages and frequency

Information Flow

The State Estimator ingests PMU data to
produce current/voltage estimates for
the distribution system

State estimation data and PV generation
forecasts populate an OpenDSS model.
PSO wraps the OpenDSS model to
calculate the optimal PF setpoints for
each of the DER devices.

DER PF settings are issued through
proprietary SSH commands and IEEE
1815 (DNP3) commands

Connected Energy Software, Cloud Application
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Connected Energy Software, Cloud Application

nitial set of Particle Swarm Optimization
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DIGITAL TWIN CONCEPT
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. Not enough Intelligent Electronic Devices (IEDs, i.e., PMUs, DERs, ' | - e PV Produstion Module

3 PDC Data (metered locations) Database

meters, etc.) to make state estimation observable for the field

IEEE C37.118

demonStration UDP over Public Internet

. Short-term load forecasts or historical data is often used as “pseudo- Distributed Energy Technologles Laboratory (DETL) \E‘@
measurements” to get a solution, but the team doesn’t have access to S
this data o E—

IEEE C37.118 Data Streams | The same PF
setpoints are
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simulated and
physical PV
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Proposal

. Use a real-time digital twin of the feeder to estimate the system OotEt= 51 e = « |gmlge= §uy oous [T s
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. If general behavior of digital twin is similar to the physical feeder, the ] i
“optimal” PF settings should support feeder voltages Opal-RT Real-Time LT fﬁ@ ) %

Distribution Simulation

. PV PF setpoints are sent to the physical and virtual PV system {Pigttal Twin)
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OPTIONS FOR VOLTAGE REGULATION USING GRID-SUPPORT FUNCTIONS National o
= Distributed Autonomous Control Volt-Var Mode
= Function: volt-var \ TQ
=  Pros: Simple, requires little or no communications, DER locations not needed - >\
= Cons: does not reach global optimum I \

Note: rather ‘gentle’ volt-var profile in this evaluation

. ESC
= Extremum Seeking Control (ESC)
=  Function: new grid-support function
*  Pros: can achieve global optimum

Objective

h 4
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= Cons: requires fitness function broadcast (with new inverter function), careful selection of N € s
e

k {
parameters s sl (%‘ sth

acos wt cos wt

T

N

= Particle Swarm Optimization (PSO)
=  Function: power factor or reactive power commands

=  Pros: direct influence over DER equipment to achieve objective Optimal Power Factor
=  Cons: requires telemetry, knowledge of DER locations, and state estimator/feeder model /m ——
Note: Forecasting tool estimates PV power production V| M




DISTRIBUTION CIRCUIT FEEDER MODEL

Sandia
National
Laboratories

OpenDSS models were converted to reduced-order RT-Lab models

The PNM feeder has ~440% PV penetration because of large utility-scale PV systems.

) Load Power
Lines | Transformers Loads Buses Voltage - - PV Power
# # # # ) Active Reactive (kVA)
(kW) (kVAR)
12 2 14 15 7200/277 2568.63 1418.71 11258.00

The NG feeder has 50% penetration chiefly as distributed PV.

13 3 43 15 8000 9494.76 318.10 5495.36
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COMPARISON OF VOLTAGE REGULATION APPROACHES

Comparison of Min, Max, and Average Voltages
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IMPACT OF EACH VOLTAGE REGULATION TECHNIQUE National

Laboratories

A scoring approach is used to measure the effectiveness of each voltage regulation technique:

tend N West Feeder Score
1 Phase A |Phase B |Phase C|Average| Improvement (%)
score = f Z(lvbl — Vnom| — |vreg - 17noml) dt w 0.024 0024 0024 0.071 12.9%
t=0 b=1 ESC 0.140{ 0.140{ 0.132 0.412 74.5%
PSO 0.139] 0.139| 0.130 0.408 73.7%
Best Score 0.186] 0.188 0.179 0.553
where,

v, - Baseline Voltage
Voom - Target Voltage
: Voltage with control applied

Vreg
T:  Time Period
b:

bus

t: time
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CONCLUSION Mational

Laboratories

= Incremental development approach was effective (simulation to real time to PHIL to field)
= Communications between measurement equipment, ADMS controllers, and DER devices can be verified.
= Build confidence in controls before field deployment.

= Digital twin was necessary during development to overcome sparse measurements for state estimation

e Observations about control options

e Volt-var functionality provides some DER voltage regulation without communications.

* In low communication environments, extremum seeking control is a viable means to control a fleet of DER
devices to track toward optimal PF setpoints, but it is relatively slow and the system must be tolerant of
probing signal ripple.

e State estimation-fed, model-based DER optimization is a viable control strategy with sufficient telemetry.

= Open question, and observations:
=  How well could negative-sequence inverters regulate voltage on unbalanced feeders?

= Available telemetry and communications will rarely supply what is assumed during ADMS development
= Software interoperability continues to be challenging
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Extremum Seeking Control will be used as a
comparison to the PF optimization technique

Steps in ESC: i L >4 'VWW

A. Centralized control center

Bus 22

collects data from the power system e
B.  Control center calculates the objective T"WV-‘ TP AW A~

function, e.g., J = 1/nxZ[(V; — V,)/Vy]? s I % _t /\E
C. Control center broadcasts objective function to all inverters. ! Ll + + -

D. Individual inverters extract their frequency-specific effect
on the objective function and adjust output to trend toward
the global optimum.

D. B. Arnold, M. Negrete-Pincetic, M. D. Sankur, D. M. Auslander and D. S. Callaway, "Model-Free Optimal Control of VAR Resources in Distribution Systems: An
Extremum Seeking Approach," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3583-3593, Sept. 2016.

J. Johnson, R. Darbali, J. Hernandez-Alvidrez, A. Summers, J. Quiroz, D. Arnold, J. Anandan, "Distribution Voltage Regulation using Extremum Seeking Control with
Power Hardware-in-the-Loop," IEEE Journal of Photovoltaics, vol. 8, no. 6, pp. 1824-1832, 2018.

J. Johnson, S. Gonzalez, and D.B. Arnold, "Experimental Distribution Circuit Voltage Regulation using DER Power Factor, Volt-Var, and Extremum Seeking Control
Methods," IEEE PVSC, Washington, DC, 25-30 June, 2017.

D. B. Arnold, M. D. Sankur, M. Negrete-Pincetic and D. Callaway, "Model-Free Optimal Coordination of Distributed Energy Resources for Provisioning Transmission-
Level Services," in IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 817-828, 2017.

Sandia
Code: https://github.com/sunspec/prodromos/blob/master/optimization/extemum _seeking control.py . OPAL-RT National
=

TECHNDLOGIES Laboratories




PF OPTIMIZATION

. Optimization occurs every minute over a 15-min horizon MiNW.S
. . - . . . 0™ violati
. OpenDSS simulation is instantiated with PV production forecast and current PF viowaen _
feeder status (which is assumed to persist) Syoration (V) =1 if any V| >V,
. State-estimation determines current feeder loads o (V —V, ..
. Forecasting tool estimates PV power production

. Particle Swarm Optimization (PSO) is used to determine the optimal PF settings
for the DER devices because of nonconvex fitness landscape

Objective Function:

C(PF)=) 1-|PF]|

(V ) + WlO' (V _Vbase ) + WZC ( PF )
) is standard deviation of V -V,

Cost minimized when voltage =

Vyyose and PF=1

Connected Energy Software, Cloud Application
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Connected Energy Software, Cloud Application
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