The Radical Atom: Mechanosynthetic 3D Printing of an Atomically Sharp SPM Tip EE0008308

University of California, Los Angeles Summer 2018 – Spring 2020

Prof. James Gimzewski (PI) and Dr. Adam Stieg (Presenter) University of California, Los Angeles

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11-12, 2019

One of five coordinated 1465 FOA projects in Atomically Precise Manufacturing.

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

As next-generation technologies for electronic, photonic, and mechanical devices approach the atomic scale, it is crucial to develop methods for atomically precise manufacturing (APM). A persistent hurdle in the application of nanotechnology to manufacturing is our inability to practically realize atomically defined structures. *The Radical Atom* aims to develop a new approach to robust and scalable manufacturing on an atom-by atom basis in three-dimensions.

Timeline:

- Award initiated August 2018
- Team re-organization January 2019
- Budget revision under review March 2019
- No-cost extension request for Budget
 Period 1 in process May 2019
- New project end data December 2020

Budget:

	Year 1 Costs	Year 2 Costs	Total Planned Funding (Aug 2018 – Dec 2020)
DOE Funded	\$500K	\$500K	\$1M
Project Cost Share	\$125K	\$125K	\$250K

Barriers:

- 30 years of instrument development will be leveraged to overcome the limits of positional control in 3D w/ atomic precision.
- Designer molecular tools (radicals) will enable the spatially-defined formation and/or rupture of individual atomic bonds.

Partners:

- This program is hosted by the California NanoSystems Institute (CNSI) at UCLA
 - Gimzewski (PI) oversees SPM development and surface chemistry efforts (Tasks 2 & 4)
 - Rubin leads synthetic chemistry efforts (Task 3)
 - Sautet leads the computational efforts (Tasks 1 & 5)
 - Stieg leads instrument and tip chemistry efforts (Tasks 2 & 6).

Project Objectives

In alignment with MYPP Goal 5.4, this project strives to develop a sustained program to design and construct functional nanosystems for automated, programmable, atomically precise manufacturing (APM) using positional assembly.

Mechanochemical Assembly

MILESTONES.

To develop a viable platform for APM, *The Radical Atom* will:

- 1. Design and synthesize surface-bound radicals that serve as molecular tools to directly and controllably form/rupture atomic bonds.
- 2. Demonstrate the fabrication of a scanning probe microscope (SPM) tip that is atomically sharp in three dimensions.

POTENTIAL BENEFITS.

A foundational breakthrough toward direct fabrication of atomically precise structures for applications in:

- 1. Catalysts using low coordination and/or metastable structures leading to low cost manufacturing processes
- 2. Synthesis of functional molecules and materials with improved reaction specificity and yields
- 3. Qubit arrays and networks for quantum computation

CHALLENGES. Despite dramatic advances in top-down manufacturing and bottomup assembly at nanoscale dimensions, the precise control over the interactions between individual atoms required for APM in 3D has remained elusive.

Technical Innovation

Current state-of-the-art in 3D fabrication at the nanoscale.

All modern techniques are limited by resolution¹, specificity², or dimensionality³

ACS APPLIED MATERIALS

Letter www.actami.org

Probing the Morphology and Evolving Dynamics of 3D Printed Nanostructures Using High-Speed Atomic Force Microscopy Chen Yang.^{±140} Robert Winkler,[‡] Maja Dukic,[‡] Jie Zhao,[‡] Harald Plank.^{±140} and Georg. E Fant

Gediminas Seniutinas*, Armandas Balčytis, Ignas Reklaitis, Feng Chen, Jeffrey Davis, Christian David and Saulius Juodkazis*

Tipping solutions: emerging 3D nano-fabrication/ -imaging technologies

ARTICLE

(3)

Multi-metal electrohydrodynamic redox 3D printing at the submicron scale

OPEN

Alain Reiser [©] ¹, Marcus Lindén [©] ¹, Patrik Rohner [©] ², Adrien Marchand [©] ³, Henning Galinski [©] ¹, Alla S. Sologubenko [©] ¹, Jeffrey M. Wheeler [©] ¹, Renato Zenobi [©] ³, Dimos Poulikakos [©] ² & Ralph Spolenak [©] ¹

LT-STM Manipulation (Gimzewski)

Technical Innovation

(1) Mechanochemistry

Coupling mechanical and chemical processes at the molecular scale

Application to SPM tip modification:

- Create a high-energy, reactive molecule (radical) on the surface
- Approach the tip atom to be removed toward the surface-bond molecular radical
- Make and/or allow for bond formation
- Pull away to abstract the atom from the tip

(2) Molecular radicals

Provide a potential to spontaneously and selectively abstract atoms

An asymmetric chemical potential between the SPM tip and surface-bound molecular tool (radical) will break an atomic bond at the tip apex, increasing the overall energy to a more thermodynamically favorable level than the initial condition.

(3) Scalability. An achievable areal density of molecular tools can reach $\sim 10^{12}$ reactive sites/cm², providing nearly infinite repeatability of both additive or subtractive atomic manipulation of material structure in 3-dimensions.

Technical Approach

 The project will integrate computational chemistry (Task 1 - Sautet), organic synthesis (Task 3 - Rubin) and reaction modeling (Task 5 - Sautet) with state-ofthe-art, scanning probe-based methods (Tasks 2,4 and 6 – Gimzewski and Stieg) for 3-D nanofabrication with individual atoms and molecules.

Tasks 1 & 5

- To mitigate risk, three decision points have been defined:
- 1. (Q4) Demonstration of activated, surface-bound reactants
- 2. (Q5) Use of a surface-bound reactant to characterize the structure of the SPM tip apex.
- 3. (Q6) Demonstration of atom abstraction from the SPM tip through controlled interaction with surface-bound reactants.

Technical Approach

Results and Accomplishments

Molecular Design (T1) & Reaction Modeling (T5)

A molecular tool has been designed:

- Trithiol linkage for chemisorption
- Diamondoid core for stability

- Activated radical headgroup to abstract atoms from the SPM tip
- Modeling of reaction trajectories to inform experiment

Instrument Upgrade & Development (Task 2)

LT-SPM has been configured:

 <1 pm of drift/hr (1/300th atomic diameter) @ 4K temperature

- Simultaneous STM/nc-AFM
- High-performance spectroscopy (dI/dV and df/dz)

Chemical Synthesis (Task 3)

Synthetic path enables:

 Use of various head (radicals) and anchoring groups

Scalable production of purified chemical precursors

Results and Accomplishments

Task	Status	Dates	Schedule
1 – Target Definition	Methods have been developed and implemented. Specific molecular reactant, substrate and tip identified.	Q4	On track
2 – Instrument development	System re-configured. Expected delivery and install in mid-May 2019.	Q2-6	On track
3 – Chemical synthesis	Revised synthetic path underway, with purity demonstrated at 4 of 16 steps.	Q4-5	On track
4 – Surface chemistry	Task contingent on completion of Task 3. Will be initiated in Q4.	Q4-6	On track
5 – Computational modeling	Trajectories for extraction of tip atom from Au tip simulated. Modeling of Au(111) surface in the presence of adamantane trithiol complete.	Q1-8	On track
6 – Tip chemistry	Task contingent on completion of Task 4. Will be initiated in Q6.	Q6-8	N/A

New R&D platform

- Provide new toolsets and workflows for R&D applications in APM and potential commercial sales
- Further develop molecular toolsets to expand the library of applicable materials
- Explore partnership opportunities with manufacturers of commercial SPM systems to provide optimized, purpose-built instrumentation for APM applications

Intellectual Property

• Secure US competitiveness in a field of translatable R&D that is vibrant in Europe, Canada and Asia

Scaling for manufacturing applications

- Partner with commercial instrument manufacturers, potentially Scienta Omicron, to develop new instrumentation for higher throughput and flexibility to increase sales
 - Multiple probe SPM systems for APM
 - Non-SPM based platforms for mechanochemistry

Thank you for your attention!

From left: Prof. Yves Rubin. Sam Lilak. Prof. Philippe Sautet, Prof. James Gimzewski, Dr. Adam Stieg, Dr. Pallavi Bothra, Yolanda Li