Development of Roll-to-Roll Simultaneous Multilayer Deposition Methods for Solid-State Electrochemical Devices Using Highly Particulate Loaded Aqueous Inks

Contract Number DE-AC05-00OR22725 Saint-Gobain High Performance Material & Oak Ridge National Laboratory Project Period: August 1, 2018 – July 31, 2020

> Jeff Peet Saint-Gobain High Performance Solutions

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 11-12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Project title

 Development of Simultaneous Multilayer Rollto-Roll (SM-R2R) Deposition Methods for Solid-State Electrochemical Devices Using Highly Particulate Loaded Aqueous Inks

Timeline

- Project Start Date: 08/01/2018
- Budget Period End Date: 08/01/2019
- Project End Date: 08/01/2020

AMO MYPP Connection

- 3.1.8 Roll-to-Roll Processing
- 3.3.2 Advanced Manufacturing for Clean Electrical Power Generation

Barriers and Challenges addressed

- Continuous processing
- Scalability
- Materials compatibility
- Defects

Project Budget and Costs

Budget	DOE Share (incl. ORNL)	Cost Share	Total	Cost Share %			
Overall Budget	\$ 850,353	\$ 212,591	\$ 1,062,944	20%			
Approved Budget (BP-1 & 2)	\$ 850,353	\$ 212,591	\$ 1,062,944	20%			
Costs as of 3/31/19	\$ 234,936	\$ 63,206	\$ 298,143	20%			

Project Team and Roles

Saint-Gobain

- Jeff Peet Pl
- J. Alex Lee Project leader
- Brian Barry Pilot line coating trials
- Nicole Love Pilot line coating trials

Oak Ridge National Labs (ORNL)

- Sujit Das Technoeconomic Analysis
- Kanchan Upadhyay Technoeconomic Analysis

Project Objectives

Project aims

- lower production cost,
- increase performance, and
- reduce lifecycle energy consumption for...

Devices commonly cast from highly particulate loaded aqueous inks

- Fuel cells
- Lithium-ion batteries
- Photovoltaics
- Capacitors

Technical objective

- Fabricate & characterize devices R2R cast with up to 6 layers simultaneously
- Evaluate potential benefit for various applications
- Develop cross-sector design rules for SM-R2R ink formulation

Technical Innovation

Current practice: single layer tape casting (knife)

Next generation: simultaneous multilayer coating

Physical basis for concept

- Wet-on-wet simultaneous coating has precedence in photographic film industry
- As long as ink media are co-miscible (low/no interfacial tension), fluid mechanics are similar to single layer coating
- Layer viscosity pairing determines coatability

Technical Innovation

What does SM-R2R coating enable?

- Thinner films than feasible by single layer coating methods
- Tuned interfacial properties may be enabled though process and formulation design

What are the new challenges?

- Ceramic slurries with large particles are challenging to process; industry experience with SM-R2R coating of slurries is limited
 - Fluids handling issues (pumping, settling, complex rheology)
- Challenges of drying of suspensions with many length-scales and controlling dryinginduced defects (cracking, delamination, dewetting, etc.) scale with total thickness

Potential Impacts?

- Consolidation of multiple coating steps has the potential to reduce operating and capital costs proportional to the number of layers are being integrated (e.g., 1/6 of the cost for 6 layers)
- Applicable to multiple markets and applications

Technical Approach

Phase 1: 2 layer slot simultaneous coatings

- Use 2 layer slot coating to optimize film formation & drying
- Test each pair of the layer stack for compatibility
- Build devices from each pair to compare with tape casting
- Map out potential benefits & drawbacks (e.g. morphology, flexibility)
- Work with ORNL to build framework for techno-economic analysis

Phase 2: 3-6 layer simultaneous coatings

- Use multilayer slide coating to cast 3-6 layers simultaneously
- Fabricate & test functional devices and compare with the benchmark
- Complete techno-economic analysis comparing various applications

Advisory Board

- Board guides technical focus areas and how to structure TEA
- Evaluate and help refine technical approach already evaluated favorably

David Wood, Oak Ridge National Labs Balu Balachandran, Argonne National Labs Mike Lanagan, Penn State University Peter Schweizer, Schweizer Coating Consulting

Timeline & milestone table

			YEAR 1								YEAR 2															
#	Task	Lead	Q1			Q2			Q3			Q4			Q5			Q6			Q7			Q8		
			08	09	10	11	12	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	07
1	Inks characterized & 2-layer SM-R2R coating	SG																								
1.1	Literature review				Μ					Μ																
1.2	Inks characterized; 1-layer slot trials, spec'ed 2-layer die				М																					
1.3	Development of the first 2-layer coating							Μ	Μ																	
1.4	Coatability assessment of remaining layer pairs																									
1.5	Production and testing of the first 2-layer coating																									
1.6	Development of 6-layer slide die specifications										Μ	М														
2	2-layer optimization and fuel cell integration	SG																								
2.1	Production & testing of the remaining layer pairs													Μ												
2.2	Integration of the first 2-layer coating into fuel cells													Μ												
3	Techno Economic Analysis framework for SM-R2R	ORNL																								
3.1	Complete and document process modeling framework													Μ												
	Go/No-Go Decision Point (Phase 1)													G												
				Q1			Q2		Q3		Q 4			Q5			Q6			Q7			Q8			
			08	09	10	11	12	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	07
4	6-layer coating and electrochemical testing	SG																								
4.1	SM 2-layer electrochemical testing of fuel cells																М									
4.2	Production and testing of 6-layer coatings																			Μ			Μ			
4.3	SM 6-layer electrochemical testing of fuel cells																								Μ	
5	Techno-Economic Analysis applied to SM-R2R	ORNL																								
5.1	Assessment and recommendations for various SSEDs																								Μ	
	End of the Project Goal																									
5	Project management and reporting	SG																								

current

Results and accomplishments – technical

Single- and dual-layer slot coating verified as viable coating method

- Single-layer R2R slot coated films integrated into devices
- Dual-layer R2R slot coated ceramic films demonstrated with target layer thicknesses and distinct inter-layer (copy milestone)

Remaining work to project-end

 Optimize dual-layer slot coating for all device layer pairs and demonstrate device performance meeting or exceeding baseline

SEM C

- Initiate multilayer slide coating process trials
- Produce defect-free simultaneously coated multilayer (up to 6 layer) film
- Demonstrate device performance meeting/exceeding baseline using SM-R2R coated film

Techno-Economic Analysis

Develop a system level tape casting cost modeling framework to determine the competitiveness of multilayer R2R manufacturing technology for solid state energy applications

- Estimate system level cost impacts with a focus on cost modeling of major process steps of tape casting and the resulting impacts on sub-assemblies
- Technical and economic parameters considered by process step: cycle time, yield, material cost, capital
- Cost estimated by process step at the major categories, i.e., materials, capital, energy, and labor (including sensitivity analysis of key parameters and impacts of economies of scale)
- Identify major cost drivers (e.g., yield, capital, labor, and energy) by process step of the Multilayer R2R technology economic competitiveness

Transition (beyond DOE assistance)

Commercialization by Saint-Gobain

• Markets where Saint Gobain has programs or participates

Commercialization by Saint-Gobain partners

Markets where Saint-Gobain is a raw material provider

Other markets

- Other markets identified in techno-economic analysis
- Other markets identified by advisory board
 - Multilayer capacitors
 - Solid state batteries
- Commercialization & tech transfer strategy will vary