## Ducted Fuel Injection (DFI) for Heavy-Duty Engines



#### **Charles J. Mueller**

Sandia National Laboratories Engine Combustion Research Department Livermore, California

#### Funded by: U.S. Dept. of Energy, Vehicle Technologies Office Program managers: Michael Weismiller & Gurpreet Singh



DOE Vehicle Tech. Office Annual Merit Review Mtg. Hyatt Regency Crystal City, Arlington, Virginia June 13, 2019 @ 9:00 am Project ID: ACE131 is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sanda LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract. DE-NA0003525. SAND2014.4729. PE

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

### **Overview**

#### Timeline

- Project start: Oct. 1, 2018
- Project end: Sept. 30, 2019
- 56% complete

#### **Budget**

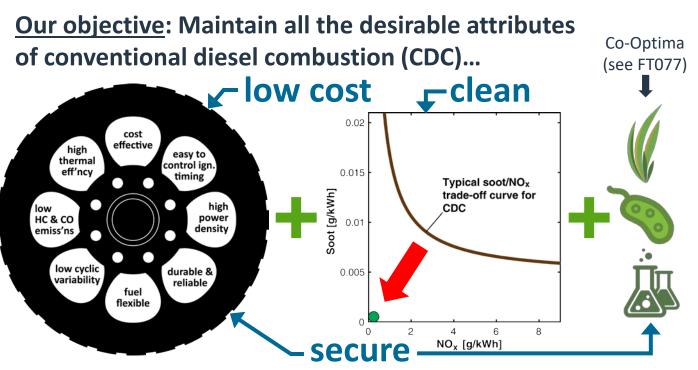
- FY19 funding: \$550k
  - Mueller: \$450k
  - Skeen: \$100k
- FY18 funding: \$0k

Acronym definitions: FY = fiscal year, runs Oct. 1 – Sept. 30; NO<sub>x</sub> = nitrogen oxides; PI = principal investigator; MOU = Memorandum of Understanding; Co-Optima = Co-Optimization of Fuels and Engines program; CRADA = Cooperative Research & Development Agreement; Next slide: HC = hydrocarbon; CO = carbon monoxide

#### **Barriers**

- "The research areas of highest priority for clean diesel combustion are:
  - a. Reduced engine-out NO<sub>x</sub> and particulate emissions

**b.** ..."


\*from <u>https://www.energy.gov/sites/prod/files/2018/03/f49/</u> ACEC TT Roadmap 2018.pdf, Page 2.

#### Partners

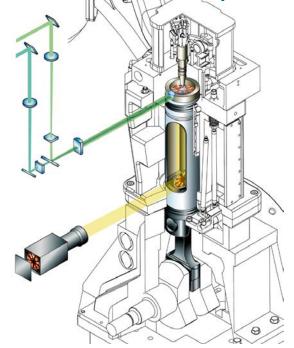
- PI: Charles J. Mueller
- Co-Optima
- Caterpillar & Ford (CRADA)
- Advanced Engine Combustion
   MOU

## Relevance

"The U.S. Department of Energy's Vehicle Technologies Office provides low cost, secure, and clean energy technologies to move people and goods across America." https://www.energy.gov/eere/vehicles/vehicle-technologies-office



...with 10X – 100X lower soot & NO<sub>x</sub> emissions ...while harnessing synergies with domestically sourced fuels

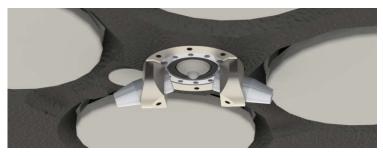

### Milestones

- Dec. 31, 2018: Install & align DFI two-duct holder in optical engine, and complete testing to determine whether DFI can break the soot/NO<sub>x</sub> trade-off with conventional diesel fuel.
  - Completed.
- Sept. 30, 2019: Determine sensitivity of DFI to changing four engine operating-condition and/or fuel-injection parameters.
  - On track.

## Approach

Designed to provide stakeholders with high-quality, relevant, unbiased experimental data for making informed decisions regarding DFI technology.

Using the only DFI engine in the world & guidance from industry, conduct sweeps of basic engine operating-condition & fuel-injection parameters to better understand sensitivities.




#### • Swept variables

- Intake oxygen mole fraction, X<sub>02</sub>
- Duration of injection, DOI
- Start of combustion, SOC
- Injection pressure, P<sub>inj</sub>
- Intake manifold abs. press., IMAP
- Intake manifold temperature, IMT
- Diagnostics
  - Cylinder pressure
  - Emissions
  - Natural luminosity (NL) imaging

## **Technical accomplishments**

## Successfully installed & aligned a twoduct holder to test DFI in the optical engine

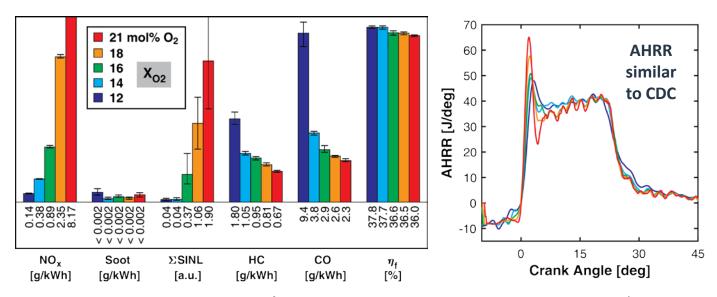


• Duct configuration

2 mm inner diam., 12 mm long,
 inlet 3 mm from inj. orifice exit

#### • Injector tip

- 2 × 0.108 mm × 140°
- Load  $\approx$  2.6 bar gross IMEP


• Fuel

- No. 2 S15 certification diesel
- 1200 rpm engine speed

| Research engine           | Single-cyl. |
|---------------------------|-------------|
| Cycle                     | 4-stroke CI |
| Valves per cylinder       | 4           |
| Bore                      | 125 mm      |
| Stroke                    | 140 mm      |
| Displacement per cylinder | 1.72 liters |
| Conn. rod length          | 225 mm      |
| Conn. rod offset          | None        |
| Piston bowl diameter      | 90 mm       |
| Piston bowl depth         | 16.4 mm     |
| Squish height             | 1.5 mm      |
| Swirl ratio               | 0.59        |
| Compression ratio         | 12.5:1      |
| Simulated compr. ratio    | 16.0:1      |

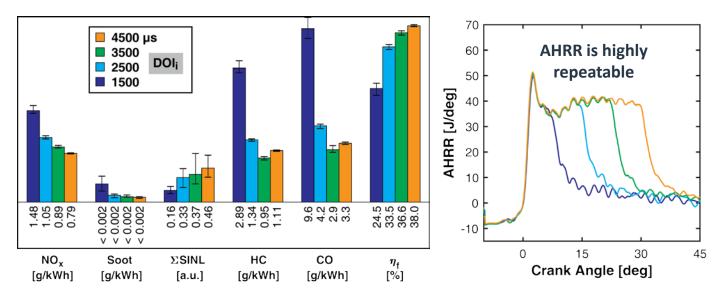
IMEP = indicated mean effective pressure; S15 = 15 parts per million sulfur max.; CI = compression ignition


# Intake oxygen mole fraction (X<sub>02</sub>) sweep shows benefits of DFI with dilution.



- NO<sub>x</sub> is dramatically  $\downarrow$  without a corresponding soot  $\uparrow$
- HC & CO emissions  $\uparrow$  more significantly at highest dilution
- Fuel-conversion efficiency ( $\eta_f$ ) improves with dilution

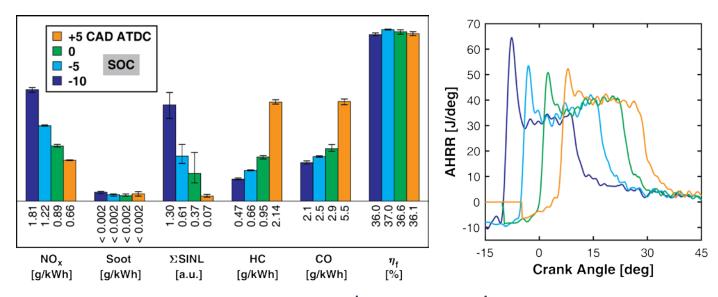
mol% =  $molar percentage; O_2 = oxygen; \Sigma SINL$  = temporally & spatially integrated natural luminosity (indicator of hot, in-cylinder soot); AHRR = apparent heat-release rate; <math>g = grams; kWh = kilowatt-hour; J = Joule; deg = degree


### DFI with dilution can break the longstanding diesel soot/NO<sub>x</sub> trade-off.



DFI lowers soot by ~10X to ~100X with current diesel fuel
Dilution lowers NO<sub>x</sub> by ~20X to ~50X

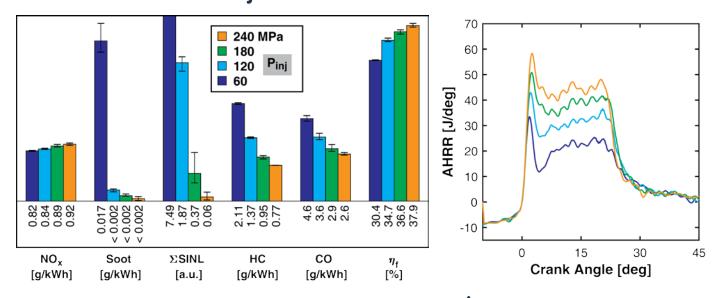
US EPA = United States Environmental Protection Agency; kW = kilowatt


# Duration of injection (DOI) sweep shows that longer injections tend to be better.



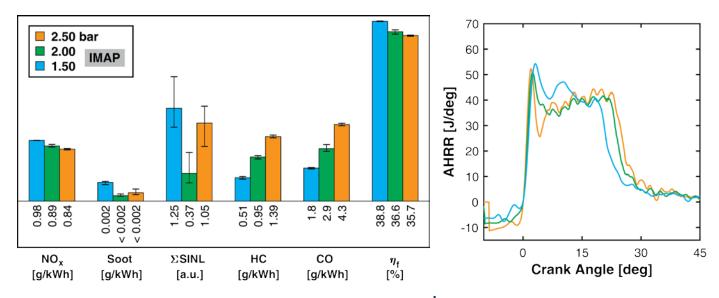
• Longer DOIs tend to produce lower indicated-specific NO<sub>x</sub>, HC, & CO emissions, as well as higher  $\eta_f$ 

DOI<sub>i</sub> = indicated duration of injection (i.e., duration of electronic trigger signal to injector driver)


# Start of combustion (SOC) sweep shows that DFI behaves similarly to CDC.

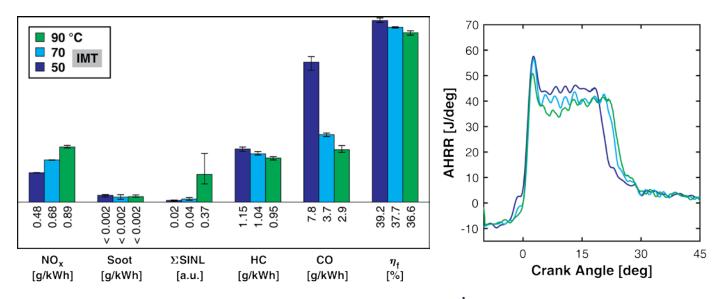


- Retarding SOC causes NOx  $\downarrow$ , HC & CO  $\uparrow$ 
  - Also facilitates transition to LLFC (indicated by low  $\Sigma$ SINL)
- $\eta_f$  does not change significantly for the studied SOC range


*LLFC* = *leaner lifted-flame combustion (i.e., diesel combustion that does not produce soot); CAD ATDC* = *crank-angle degrees after top-dead-center* 

# Injection pressure (P<sub>inj</sub>) sweep shows that higher P<sub>inj</sub> is largely beneficial.




- Soot, HC, CO, &  $\eta_f$  all improve as  $\mathsf{P}_{\mathsf{ini}}$   $\uparrow$ 
  - Highest P<sub>ini</sub> of 240 MPa intermittently achieves LLFC
- Measureable soot can be produced if P<sub>ini</sub> is too low

# Intake manifold abs. pressure (IMAP) sweep: lower IMAP is generally better.



- HC, CO, &  $\eta_f$  all improve as IMAP  $\downarrow$ 
  - But NO<sub>x</sub> & soot degrade slightly
- Local minimum in  $\Sigma$ SINL at 2.00 bar IMAP baseline condition requires further study

# Intake manifold temperature (IMT) sweep shows mixed results.



- NO<sub>x</sub>,  $\Sigma$ SINL, &  $\eta_f$  all improve as IMT  $\downarrow$ 
  - Should be beneficial for low NO<sub>x</sub> under cold-start operation
  - LLFC intermittently achieved at 50 °C IMT
- HC & CO  $\uparrow$  somewhat as IMT  $\downarrow$

## Responses to previous year's reviewers' comments

• No reviewer comments – this project was a new start in FY19.

# **Collaboration & coordination with other institutions**

- Co-Optimization of Fuels & Engines Program (Co-Optima)
  - Two (2) DOE offices, nine (9) national labs, > 20 universities,
     > 80 stakeholder organizations, > 120 researchers
  - Fuel effects on DFI

### DOE Technology Commercialization Fund CRADA

- Partners: Caterpillar Inc. & Ford Motor Co.
- Two-year project, started in FY19
- Overcoming barriers to DFI commercialization
- Advanced Engine Combustion MOU
  - 18 companies, 20 universities, seven (7) national labs
  - General guidance & oversight

• Sibendu Som (Argonne National Lab) & Sotirios Mamalis (Stony Brook University): Large eddy simulations of DFI

### **Remaining challenges & barriers**

- What is the potential for DFI to work at high load cond's?
  - What are the effects of adding more ducts &/or using larger injector-orifice diameters?
- How sensitive is engine-DFI performance to varying duct geometric parameters?
  - E.g., duct inside diameter, duct length, & stand-off distance from injector-orifice exit-plane to duct inlet-plane
- What are the fundamental physical processes governing DFI performance?
  - How can they be used to determine optimal duct designs?
- How can the slight drop in thermal efficiency be reversed?
- What is required to ensure duct alignment & durability?

### Proposed future research (rest of FY19 & FY20)

Any proposed future work is subject to change based on funding levels.

- Explore strategies for achieving high load DFI operation
  - Adding more ducts (six if possible, otherwise four)
  - Using larger injector-orifice diameters (~ $\emptyset$ .175 mm)
- Quantify sensitivity of engine-DFI performance to varying duct geometric parameters
  - Duct inside diameter ( $\emptyset$ 2 mm vs.  $\emptyset$ 3 mm)
  - Length (8 mm vs. 12 mm vs. 16 mm)
- Develop an improved understanding of the fundamental physical processes governing DFI performance
  - Use existing literature, theoretical analysis, & computational investigations

### **Summary**

| Relevance                    | This research directly supports the DOE Vehicle Technologies<br>Office mission of providing "low cost, secure, and clean energy<br>technologies to move people and goods across America" & a key<br>industry objective of simultaneously lowering diesel NO <sub>x</sub> & soot.                                                                                                                                                |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Approach                     | <ul> <li>Conducted the world's first DFI experiments in an engine.</li> <li>All milestones are either completed or on track.</li> </ul>                                                                                                                                                                                                                                                                                         |  |
| Technical<br>accomplishments | <ul> <li>Tested DFI while sweeping X<sub>O2</sub>, DOI, SOC, P<sub>inj</sub>, IMAP, &amp; IMT.</li> <li>DFI with dilution can break the long-standing diesel soot/NO<sub>x</sub> trade-off, potentially enabling a new generation of clean, cost-effective engines that are compatible with current fuels.</li> <li>In many respects, DFI performs similarly to CDC, except with substantially lower soot emissions.</li> </ul> |  |
| Collaboration & coordination | The work is closely integrated with Co-Optima, the Advanced Engine Combustion MOU, & industry through a CRADA.                                                                                                                                                                                                                                                                                                                  |  |
| Future research              | Future researchAddresses key technical barriers to DFI implementation:<br>increasing load, understanding duct-geometry sensitivities, &<br>optimizing performance for different applications.                                                                                                                                                                                                                                   |  |