

Tribal Options Analysis Rules of Thumb: Solar, Wind, and Biomass

Douglas Gagne

5/29/2019

Community Benefits of Utility-Scale RE Development

Economic

Renewable energy development creates multiple economic benefits to communities, including:

- Job creation (construction & permanent)
- Indirect impacts (employee spending at local businesses)

Workforce Development

- Developers can agree to prioritize local, qualified labor for construction.
- Operations and maintenance work can often be carried out by locals.

Land Lease Payments

Land leases are a significant revenue stream for the life of the project, and are typically paid directly to the landowner.

Community Funds

 Community funds may support energy efficiency, fire departments, schools, reduced electricity rates for low-income residents, etc.¹

Property Taxes and Infrastructure Upgrades

 RE development can support the tax base of certain regions.

1.Rynne, S., et al. (2011). Planning for Wind Energy. American Planning Association. Report Number 566. Accessed March 14, 2018. Available at www.planning.org/ research/wind/index.htm

Current Sources & Costs of Electricity

2018 ATB LCOE range by technology for 2016 based on R&D + Market financial assumptions Source: National Renewable Energy Laboratory Annual Technology Baseline (2018), http://atb.nrel.gov

Source: NREL Annual Technology Baseline- 2018: <u>https://atb.nrel.gov/electricity/2018/summary.html</u>

SOLAR PHOTOVOLTAICS (PV)

Technology Overview

- Direct conversion of sunlight into direct current (DC) electricity
- DC converted to alternating current (AC) by inverter
- Solid-state electronics, no-moving parts
- High reliability, warranties of 20 years or more

• PV modules are wired in series and parallel to meet voltage and current requirements

Capital & Operating Costs

- The cost of solar has declined precipitously in the past decade, and continues to decrease, albeit at a slower rate.
- Costs below the Annual Technology Baseline estimates have been reported in the marketplace:
 - \$1,000/kW installed solar costs and \$0.03/kWh PPAs for utility-scale solar projects.

Annual Technology Baseline 2018 PV Cost Estimates

	Capital Costs	Operating Costs	Levelized Cost of Energy
Utility-Scale	\$1,800/kW	\$14/kW-year	\$0.045/kWh
Commercial	\$2,600/kW	\$18/kW-year	\$0.089/kWh
Residential	\$3,800/kW	\$24/kW-year	\$0.12/kWh

PV Siting Considerations

- Rooftop/Canopy:
 - No shading from other buildings, trees, etc.
 - On existing building roofs that have an expected life of at least 15 more years and can accept added load - typically 2-4 pounds (lbs)/ft²
 - Over parking areas, pedestrian paths, etc. energy generation and sun protection for vehicles in summer
- Ground-mounted solar:
 - Slope <5% likely required for utility-scale; slopes of <3% are preferable.
 - Proximity to existing roads and electrical infrastructure
 - Compromised lands such as landfills and brown fields can be viable

PV Land Requirements

 Generally, PV requires 5-7 contiguous acres/MW for the entire site footprint, depending on the type of PV system.

	Technology	Direct Area		Total Area	
		Capacity- weighted average land use (acres/MWac)	Generation- weighted average land use (acres/GWh/yr)	Capacity- weighted average land use (acres/MWac)	Generation- weighted average land use (acres/GWh/yr)
Sr	mall PV (>1 MW, <20 MW)	5.9	3.1	8.3	4.1
	Fixed	5.5	3.2	7.6	4.4
	1-axis	6.3	2.9	8.7	3.8
	2-axis flat panel	9.4	4.1	13	5.5
	2-axis CPV	6.9	2.3	9.1	3.1
	Large PV (>20 MW)	7.2	3.1	7.9	3.4
	Fixed	5.8	2.8	7.5	3.7
	1-axis	9.0	3.5	8.3	3.3
	2-axis CPV	6.1	2.0	8.1	2.8

In addition to the area covered by the PV array, additional land area is required for setbacks, access roads, fencing, and a possible substation.

Example of total vs. direct land use in a ground-mount PV system⁶

Ong et al. 2013

Estimating Production

- Varies from 3–6 kWh/m²/day in most of U.S
- Net Capacity Factor depends on axis and tilt:
 - Fixed: 15% to 20%
 - Single Axis: 20% to 27%

Use PV Watts to estimate production

<u>https://pvwatts.nrel.</u>
 <u>gov/</u>

Calculating Solar Production

Detailed:

• System size (kW_{DC})*Capacity Factor (%) * 8,760 (hours)

 Consult RE Atlas for production estimates

"Rule of Thumb" for fixed tilt PV:

- System size (kW_{DC})* Annual Energy production (kWh/kW)
 - Use reference areas in the map and table to the right

Location	Production (kWh/kW)
Utility PV - Seattle	1,102
Utility PV - Chicago	1,295
	4 400
Utility PV - Kansas City	1,420
Utility PV - Los Angeles	1,595
Utility PV - Daggett, CA	1,823

Global Horizontal Solar Irradiance National Solar Radiation Database Physical Solar Mod

Estimates per NREL ATB 2018

∷NRE

Job Requirements

- Primarily constructionoriented, limited full-time operating staff required
- Construction (1-2 years): ~11 job-years /MW DC (1,100 jobs for a 100 MW solar farm)
- Operations (20-30 years): ~0.1 job-years/MW DC (10 jobs for a 100 MW solar farm)

Based on NREL utility project data

ONSHORE WIND

Technology Overview

Simplified schematic of a Wind Turbine Generator. Illustration by Alfred Hicks. NREL

Technology Overview

Photo from Bergey Windpower Co. Inc., NREL 02102

Small (≤100 kW)

Homes

Farms

Remote applications (e.g., water pumping, telecom sites, ice making)

Mid-scale (100 kW – 1,000 kW) Village power Hybrid systems Distributed power

Photo from Tjaden Farms, NREL 13764

Large, land-based (1 MW – 3 MW) Utility-scale wind farms Large distributed power

Photo from HC Sorensen, NREL 17855

Large, offshore (3 MW – 7 MW) Utility-scale wind farms, shallow coastal waters

Capital & Operating Costs

- Capital Costs
 - Utility-Scale: \$1,500-\$1,700/kW
- Operating Costs
 ~\$50/kW-year
- Levelized Cost of Energy:
 - \$0.037/kWh to\$0.169/kWh
 - Very resourcedependent

Siting and Land Requirements

- Land requirements for wind are unique, because they require very large tracts of land for turbine spacing, but only disturb a small portion of the land.
 - Permanent land requirement: ~1 acre/MW
 - Temporary land requirement: ~2 acres/MW
 - Total land requirement: 25-124 acres/MW

Citation: Denholm et al. 2009

Siting and Land Requirements

- Siting is very resource dependent, and developers will typically install 3-10 meteorological towers for 1-4 years to measure the wind resource before investing.
- Presence of avian migration pathways, proximity to population centers, and presence of NEPA criteria are major siting concerns.
- Setbacks are county-dependent: Turbines will need to be at least 1.1 x structure height away from roads, property lines, and electric lines. They will also need to be at a distance of at least 5x the rotor diameter from other turbines.

Turbulence and Micrositing

Estimating Production

- Production varies considerably geographically (average wind speeds of 4m/s to 9 m/s)
 - This results in a range in capacity factors of 11% to 48%

- Use the wind prospector tool to estimate production:
 - <u>https://maps.nrel.gov/wind-prospector/</u>

Estimates per NREL ATB 2018

Wind Speed Range	Weighted Average	Weighted Average
(m/s)	Wind Speed (m/s)	Net CF (%)
8.2 - 13.5	8.7	47.4%
8.0 - 10.9	8.4	46.2%
7.7 - 11.1	8.2	45.0%
7.5 - 13.1	7.9	43.5%
6.9 - 11.1	7.5	40.7%
6.1 - 9.4	6.9	36.4%
5.4 - 8.3	6.2	30.8%
4.7 - 6.9	5.5	24.6%
4.0 - 6.0	4.8	18.3%
1.0 - 5.3	4.0	11.1% NREL 20

Resource: Power in the Wind

Wind power is proportional to velocity cubed (V³):

- -25% higher wind speed \approx **2 times the power** available
- If wind speed is doubled, power increases by a factor of 8 (2³ = 8)!
 Small differences in average speed cause big differences in energy production!

Resource: Wind Shear

Increasing the wind speed from 8.8 to 11 m/s (25% increase), doubles the available power in the wind!

That is why "taller towers" is often the first answer to "how can the wind turbine energy production be increased at this location?"

Job Requirements

 ~4 job-years/MW during construction (400 full time jobs for a 100MW wind farm)

 This falls to 0.16 job-years/MW during operations (or 16 jobs for the 100 MW wind farm discussed above)

(JEDI model 2018 default inputs)

La Maria

BIOMASS

Therefore

-20

Biomass Technology Overview

Technology Overview: Resources

Biomass Feedstock

- Trees
- Grasses
- Agricultural Crops
- Residues
- Animal Wastes
- Municipal Solid Waste
- Algae
- · Food Oils, Waste Oils

Conversion Process

- Combustion
- Gasification
- Pyrolysis
- Co-firing
- Enzymatic Fermentation
- Gas/liquid Fermentation
- Acid
 Hydrolysis/Fermentation
- Trans-esterification

Products

Fuels

- Ethanol
- Biodiesel
- "Green" Gasoline & Diesel

Power

- Electricity
- Heat

Chemicals

- Plastics
- Solvents
- Chemical Intermediates
- Phenolics
- Adhesives
- Furfural
- Fatty Acids
- Acetic Acid
- Carbon Black
- Paints
- Dyes, Pigments, and Ink
- Detergents
- Etc.

Food and Feed

Capital & Operating Costs

- Capital Costs
 ~\$4,000/kW
- Operating Costs
 - \$110/kW-year
 - \$0.005/kWh
- Levelized Cost of Energy – \$0.109/kWh
- Economies of scale are typically required for plants to be cost-effective (at least 10 MW)

Biomass Heat Exchanger

Siting and Land Requirements

Project feasibility depends on:

- Availability and cost of each type of biomass (chips, pellets, or logs)
 - Feedstock should be less than 50 miles away
- Competing fuel cost (e.g., fuel oil, natural gas, etc.)
- Peak and annual thermal load
- Building size and type
- Space availability
- Operation and maintenance staff availability and experience
- Local emissions regulations

Dried paper mill sludge is fed into the hopper at a biorefinery plant.

NREL Photo #07713

Estimating Production

- Dependent on feedstock availability, estimated at 56% capacity factor by ATB 2018.
- Use the Tribal Energy Atlas to estimate resource potential
- <u>https://maps.nrel.gov/tribal</u>
 <u>-energy-atlas/</u>
- Verify resource through discussions with local feedstock providers (dairy operations, paper mills, etc.)

Job Requirements

- Per NREL expert estimates, a 50 MW plant would typically require 15 to 40 fulltime employees for electrical and mechanical supervision, feedstock processing, plant operations and maintenance, etc.
- Biomass plants generally require 15-40 job-years regardless of their size, meaning that larger plants are required to achieve sufficient economies of scale.

Tools and Resources:

- Maps of Resources/ Resource Estimates:
 - <u>Tribal Energy Atlas</u>
 - Renewable Energy Atlas: <u>https://maps.nrel.gov/re-atlas/</u>
- NREL Annual Technology Baseline

– <u>https://atb.nrel.gov/</u>

- PVWatts: <u>http://www.nrel.gov/rredc/pvwatts/</u>
- WindExchange: <u>https://windexchange.energy.gov/</u>
- Solar Decision Tree (EPA) <u>https://www.epa.gov/sites/production/files/2015-</u> <u>10/documents/repower_technologies_decision_tree.pdf</u>

Thank You

www.nrel.gov

Douglas Gagne, NREL Douglas.gagne@nrel.gov

This work was authored by Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the presentation do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NATIONAL RENEWABLE ENERGY LABORATORY

Disclaimer

This presentation was developed to meet an immediate need and was based on the best information the analysts had available within timing constraints. This analysis is a starting point for additional research and consideration of investment or policy options. Other factors that can inform decision-making are not considered here.

The analysis was prepared with information available at the time the analysis was conducted. The analysis does not constitute a comprehensive treatment of the issues discussed or a specific advisory recommendation to the jurisdiction(s) considered. The data, results, conclusions, and interpretations presented in this document have not been reviewed by technical experts outside NREL.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.