

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Design and Manufacturing of High Performance, Reduced Charge Heat Exchangers (HPRC-HX)

Tel: +1 301 405 5286 Email: raderm@umd.edu

Project Summary

Timeline:

Start date: February, 2018

Planned end date: February, 2021

Key Milestones

- Non-round tube optimization and manufacturability investigation; Mar 2019
- 2. Develop, fabricate and test prototype HXs; March 2020/2021

Budget:

Total Project \$ to Date:

- DOE: \$231,323
- Cost Share: \$353,627

Total Project \$:

- DOE: \$1,075,000
- Cost Share: \$1,250,000

Key Partners:

ORNL (Funded)	Arconic
HTT (Funded)	Daikin/Goodman
Wieland	JCI
Burr Oak	ICA
Luvata/Modine	Brazeway
Guentner	3D Systems

Project Outcome:

- Development of a comprehensive HX optimization framework
- Accelerate R&D of novel HX designs promoting 25% reduction in size and weight while maintaining structural integrity & thermal performance
- Facilitate closure of the technology-tomarket gap for non-round tube HXs

Project Team

- University of Maryland, College Park (UMD, Lead)
 - Reinhard Radermacher (PI); Vikrant Aute (Co-PI); Yunho Hwang (Co-PI); Jiazhen Ling; Jan Muehlbauer
 - Graduate Research Assistants: Ellery Klein; James Tancabel
 - Expertise: 30+ years of experience in R&D of heat pumps, refrigerant, HVAC&R components and systems, modeling and optimization software development; system and component test facilities; industry- and government-funded research collaborations

Oak Ridge National Laboratory (ORNL)

- Patrick J. Geoghegan (Co-PI); Ayyoub Mehdizadeh Momen; Mingkan Zhang
- Expertise: Computational heat transfer; additive manufacturing; testing
- Heat Transfer Technologies LLC. (HTT)
 - Yoram Shabtay (Co-PI, President); John Black (VP, Market Development)
 - Expertise: 20+ years of experience in design and manufacturing of heat exchangers for pre-production evaluation; development of innovative joining techniques for small diameter tubes and manifolds

Industry Partners

3D Systems

- Severine Guevara
- Arconic
 - Ming Li; Tao Zhou; Harry R. Zonker
- Brazeway
 - Scot Reagen
- Burr Oak Tool
 - Sean Peterson; Rocky Smith
- Goodman Manufacturing
 - James Kistler; Khaled H. Saleh
- Güntner
 - Stanislav Perencevic
- International Copper Association
 - Hal Stillman
- JCI
 - Roy Crawford; Avi Gholap
- Luvata / Modine
 - Russ Cude; Michael E. Heidenreich
- Wieland
 - Michael Schuster; Dr. Christoph Walther

Challenge

- Heat eXchangers (HX) are key components in HVAC&R systems
 - Hold refrigerant charge; impact system efficiency
- Improved HXs can lead to:
 - less refrigerant charge
 - less material use, size/weight reduction
 - lower energy consumption, emissions, and costs
- Challenges in bringing new HX technology to market
 - Novel designs must be at least 20% better
 - Novel tools that leverage developments in computing, fluid, and structure analyses, e.g., CFD, FEA, optimization algorithms
 - Lack of basic heat transfer and flow fundamentals, correlations
 - Component availability
 - Joining/manufacturing techniques
 - Flow maldistribution
 - Fouling and wetting
 - Noise and vibration

Approach

- Design, fabricate and test high performance air-torefrigerant HXs with reduced charge and lower weight and size
 - 30% charge reduction
 - 25% less weight; 25% more compact
- Develop/establish supporting manufacturing techniques
 - Small-diameter, non-round tube extrusion
 - Tube/header integration; reduced charge headers
- Conduct validation tests and address dry/wet operation issues
 - Mitigate performance degradation during dehumidifying conditions
- Deliver 3 heat exchanger prototypes to US manufacturers for independent testing and validation

Impact

Impact

- New HX designs expected to have 30% reduced charge and at least 25% reduced weight for the same thermal-hydraulic performance
 - 30% refrigerant charge reduction has potential to reduce emissions* by 35 MT CO₂
- Reduced charge designs will facilitate use of A2L/A3 refrigerants
- HX design framework applicable to other HXs
 - HX design independent of refrigerant choice
 - Optimized HXs for new refrigerants/blends
- Size/weight reduction can lead to material, logistics cost savings
- Non-round tube manufacturing methods will help reduce barrier to entry for potential OEMs and accelerate commercial use
- Industry involvement in developing and testing new designs with immediate and iterative feedback on commercial viability and T2M

Target Market

- Residential and commercial air conditioners and heat pumps
- New construction and retrofit applications

Progress: PPFSA Framework

MOGA = Multi-Objective Genetic Algorithm PPFSA = Parallel Parameterized Fluid & Structural Analysis

Progress: Analysis & Optimization

- New PPFSA framework developed and exercised to design optimal heat exchangers (radiators and 1.5-Ton condensers)
- Stress analysis for tubes & header assembly

Progress: Fabrication

- 4 tube designs chosen for fabrication
 - Successful production in copper & brass; pressure tests also successful (2 designs)
- Investigating 3 different tube-header joining options
- Additive Manufacturing for larger build volume (Capacity range 2-5 kW)

		No and	X 100 X					
		0	50		ALA			
	Bar	PSI	I (base) [mm]	II (mid) [mm]	III (tip) [mm]			
V	0	0	1.09 x 2.55	1.09 x 2.55	1.09 x 2.55			
	50	725	1.09 x 2.55	1.09 x 2.55	1.09 x 2.55			
//////////////////////////////////////	100	1450	1.09 x 2.55	1.09 x 2.55	1.09 x 2.55			
10 11	150	2175	1.09 x 2.55	1.09 x 2.55	1.09 x 2.55			
	200	2900	1.09 x 2.55	1.09 x 2.55	1.09 x 2.55			
	a) b) NURBS Tube Shape							

Stakeholder Engagement

Project Integration

- Collaboration with key project partners to identify and solve manufacturing, testing, and deployment challenges
 - Al-tube die/tooling is on order
- First-hand feedback from industry partners of UMD Consortium

Partners, Subcontractors, and Collaborators

- Heat Transfer Technologies: Project performer (HX Mfg. process development)
 - Yoram Shabtay (Co-PI, President); John Black (VP, Market Development)
- ORNL: Project performer (Advanced manufacturing and testing)
 - Patrick Geoghegan (Co-PI, R&D Staff); Mingkan Zhang (R&D Staff)
- Brazeway: Industry partner (Tube manufacturing)
 - Scot Reagan
- Ohio University: Subcontractor (Tube manufacturing)
 - Prof. Frank Craft (Director, Center for Adv. Materials Processing)

Project Communications

In-person review meetings

Publications

- Klein, E., Hwang, Y., Aute, V., Radermacher, R. A Review of Recent Advances in Additively Manufactured Heat Exchangers, 17th International Refrigeration & Air Conditioning Conference, West Lafayette, Indiana, USA, July 9-12, 2018. In print.
- Tancabel, J., Aute, V., Radermacher, R. Review of Shape and Topology Optimization for Design of Air-to-Refrigerant Heat Exchangers, 17th International Refrigeration & Air Conditioning Conference, West Lafayette, Indiana, USA, July 9-12, 2018. In print.
- Tancabel, J., Aute, V., Ling, J., Radermacher, R. Design Optimization of High Performance, Reduced Charge Condensers with Novel Tube Shapes, 25th IIR International Congress of Refrigeration, Montréal, Québec, Canada, August 24-30, 2019. Manuscript submitted for review.
- Tancabel, J., Aute, V., Ling, J., Radermacher, R. Multi-scale and multi-physics analysis of novel high performance, reduced charge evaporators with novel tube shapes, 9th International Conference on Compressor and Refrigeration, Xi'an, China, July 10-12, 2019. Manuscript submitted for review.

Remaining Project Work

Analysis & Optimization

- Finalize 3-5 kW HX designs (In progress)
 - Radiator, Condenser, Evaporator
- Create models for thermal fatigue, pressure cycling (In progress)
- Finalize 3-Ton HX designs (Feb. 2020)
- Fabrication
 - Investigate novel tube/header joining techniques (In progress)
 - Fabricate 3-5 kW HX designs with new tubes (Aug. 2019)
 - Conduct qualification tests (Feb. 2021)
- Testing
 - Two-phase testing of existing prototypes (In progress)
 - Test fabricated 3-5 kW HX designs (Feb. 2020)
 - In-house and independent testing by US manufacturers
 - System-level performance & charge reduction evaluation (Nov. 2020)

Thank You

University of Maryland College Park Prof. Reinhard Radermacher Tel: +1 301 405 5286 Email: raderm@umd.edu

Budget History								
01/01/2018 – FY 2018 (past)		FY 2019	(current)	FY 2020 – 12/31/2020(planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$164,283	\$111,391	\$67,040	\$10,913	\$482,101	\$30,112			

Project Plan and Schedule

Project Schedule												
Project Start: February, 2018	Completed Work											
Projected End: February, 2021	Active Task (in progress work)											
	FY2018			FY2019			FY2020					
Task	Q1 (Feb-Apr)	Q2 (May-Jul)	Q3 (Aug-Oct)	Q4 (Nov-Jan)	Q1 (Feb-Apr)	Q2 (May-Jul)	Q3 (Aug-Oct)	Q4 (Nov-Jan)	Q1 (Feb-Apr)	Q2 (May-Jul)	Q3 (Aug-Oct)	Q4 (Nov-Jan)
Past Work												
Intellectual Property Management Plan												
Current/Future Work												
Develop HX Opt. Framework												
Obtain non-round, small dia. tube designs												
Investigate manufacturing techniques												
Go/No-Go Point 1: Obtain tube Opt. design and manufacturing report												
Design, prototype and test 3 to 5 kW HXs												
Go/No-Go Point 2: Delivery set of in-house validated HXs to US manufacturers for independent validation												
Design, fabricate and test HXs for 3 ton systems												