

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Ultrasonic Clothes Dryer

Oak Ridge National Laboratory, GE Appliances Viral K. Patel, R&D Associate Staff patelvk@ornl.gov

Project Summary

Timeline:

Start date: 07/12/2017 Planned end date: 07/12/2020

Key Milestones

- 1. Specification for full-scale dryer prototype, 12/31/2018 (complete)
- 2. Full dryer design with parts ordered, 06/30/2019
- 3. Functioning prototype ultrasonic dryer with the ability to measure drying performance as well as energy advantage, 12/31/2019

Budget:

Total Project \$ to Date:

- DOE: \$1,900K
- Cost Share: \$800K

Total Project \$:

- DOE: \$1,900K
- Cost Share: \$1,300K

Key Partners:

GE Appliances	Cooperative research and development agreement (CRADA) partner
Virginia Polytechnic Institute and State University VIRGINIA TECH.	Academic partner (subcontract)

Project Outcome:

- This project will develop the world's first precommercial ultrasonic clothes dryer prototype with an equivalent energy factor (EF) higher than 5.4 lb/kWh without increasing drying time by more than 20% over a baseline unit
- The primary energy savings technical potential will be 280 TBtu for the 2030 energy market in all climate zones
- This project supports the 2030 Multi-Year Program Plan (MYPP) goal to develop cost-effective technologies capable of reducing a building's energy use per square foot by 45%, relative to 2010

Team

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Challenge

- Electric clothes dryers consume about 4% of total annual residential electricity use (60 TWh) and are one of the largest energyconsuming appliances in US households
- Heat-based drying in conventional clothes dryers is inefficient:
 - Conventional evaporation-based dryers must overcome the latent heat of evaporation and thus ideally need about 2453–2257 kJ/kg_{water}
 - Considering the losses, existing dryers perform at 54–66% of their theoretical maximum efficiency
- Conventional electric-resistive dryers have an EF of ~3.73 (lb/kWh) and a drying time of ~30-45 minutes

Approach

- Ultrasonic drying technology uses piezoelectric elements to shake (vibrate) the fabric at high frequency, resulting in moisture removal
 - This results in mechanical drying through vibration instead of thermal drying
 - Equilibrium scale analysis for a single microscopic pore where we assume:
 - Simple harmonic motion of the form: $y = Asin(\omega t)$
 - The driving force is mainly inertia of water: $F_{vib} \sim m_{drop} A \omega^2$
 - The main resistive force is capillary action: $F_{cap} \sim \sigma \pi d_{pore} cos \theta$

Approach

- CRADA project began 07/2017 and builds on previous work on a mid-scale prototype ultrasonic clothes dryer
- High-level approach:

Impact

- This project can potentially revolutionize the clothes drying industry with the world's first precommercial ultrasonic clothes dryer prototype with an equivalent EF higher than 5.4 lb/kWh
 - This improvement can result in primary energy savings technical potential of 280 TBtu for the 2030 energy market in all climate zones
- Eliminating the need for a high flow rate of hightemperature air will minimize issues with lint in the air processing system and will allow clothes to last longer
- The technology is branching into many other areas: (a) dehumidification, (b) desalination, (c) heat exchanger performance enhancement, and (d) noncontact ultrasonic drying

Impact

- The project has made significant advancements in our fundamental understanding of ultrasonic drying and has been disseminated to the wider research community:
 - Dupuis, E., Momen, A. M., Patel, V. K., and Shahab, S., 2019, "Electroelastic investigation of drying rate in the direct contact ultrasonic fabric dewatering process," *Applied Energy*, Vol. 235, pp. 451-462. DOI: <u>https://doi.org/10.1016/j.apenergy.2018.10.100</u>.
 - Patel, V. K., Reed, F. K., Kisner, R., Peng, C., Moghaddam, S., and Momen, A. M., 2019, "Novel Experimental Study of Fabric Drying Using Direct-Contact Ultrasonic Vibration," *ASME Journal of Thermal Science and Engineering Applications*, Vol. 11, pp. 021008-1:021008-10. DOI: 10.1115/1.4041596.
 - 3. Dupuis, E., Momen, A. M., Patel, V. K., and Shahab, S., "Ultrasonic Piezoelectric Atomizers: Electromechanical Modeling and Performance Testing," *Proc. ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems,* San Antonio, TX, USA, September 2018.
 - 4. Dupuis, E., Momen, A. M., Patel, V. K., and Shahab, S., "Multiphysics modeling of mesh piezoelectric atomizers," *Proc. SPIE Conf. Smart Structures + Nondestructive Evaluation*, Denver, CO, March 2018.

Progress — Ultrasonic Transducer Modeling

Plate deformation due to PZT actuation

- Free and forced vibration studies
- COMSOL finite element model (FEM) – circumference of plate given prescribed value for amplitude of displacement, W₀
- Laser doppler vibrometer (LDV) measurements of acceleration

Progress — Ultrasonic Transducer Modeling

Progress — Amplifier Development

ORNL Gen 1: High-power single-ended output op-amp amplifier

ORNL Gen 2: Differential output op-amp

Image: state state

ORNL Gen 3: H-Bridge amplifier

Commercial generalpurpose amplifier 1

Commercial generalpurpose amplifier 2

Progress — Experimental Setup

Progress — Experimental Results

Average input voltage [V]	Duty cycle	Dry time as % of best achieved ultrasonic [%]	Drying efficiency as % of best achieved ultrasonic [%]	Amplifier efficiency [%]	Notes
20.0	100%	110%	<mark>4</mark> 2.8%	0.70	
25.0	100%	100%	31.8%	0.76	Lowest drying efficiency but shortest dry time
20.0	50%	130%	53.4%	0.69	
25.0	50%	120%	43.9%	0.78	
16.0	100%	130%	<mark>44</mark> .5%	0.67	
16.0	50%	150%	64.1%	0.65	High drying efficiency but long dry time
20.4	50%	120%	85.4%	0.86	Started using higher-efficiency amplifier
20.4	100%	130%	46 .1%	0.87	
20.4	50%	140%	73.9%	0.82	
20.4	50%	100%	100.0%	0.82	Highest ultrasonic drying efficiency and shortest dry time

Stakeholder Engagement

- This CRADA involves close collaboration with our industrial partner, GE Appliances, who provides guidance on
 - Target energy efficiency and drying time specifications
 - Fraction of drying to be carried out by ultrasonic elements
 - Whether this should be incorporated into main drying cycle or as an additional feature
 - Dryer prototype design and fabrication
 - Integration of ultrasonic subsystems into prototype
 - Testing and cycle parameters
- In 2018, Ultrasonic Technology Solutions exclusively licensed the technology in the commercial and industrial field of use

Remaining Project Work

- FY 2019
 - Full dryer design with parts ordered
- FY 2020
 - Functioning prototype ultrasonic dryer with the capability to measure drying performance as well as energy advantage
 - Testing and final report on dryer project to include performance, secondary factors, and ultrasonic drying model

Thank You

Oak Ridge National Laboratory Viral K. Patel, R&D Associate Staff patelvk@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: DOE: \$1900K, cost share: \$1300K Variances: No variances Cost to Date: \$741K Additional Funding: None

Budget History									
07/12/2017 - FY 2018 (past)		FY 2019	(current)	FY 2020 – 07/12/2020 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$1,000k	\$400k	\$400k	\$400k	\$500k	\$500k				

Project Plan and Schedule

	-												
Project Start: 07/12/2017		Completed Work											
Projected End: 07/12/2020		Active Task (in progress work)											
		Regular Milestone/Deliverable											
		Go/No-Go Milestone/Deliverable											
		FY2	018		FY2019				FY2020				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past work							_						
Q3 - Ultrasonic actuator model													
Q5 - Piezoelectric transducer design improvement													
Q5 - Form factor evaluation													
Q6 - Full scale dryer scoping													
Current/Future Work													
Q8 - Full scale dryer design													
Q10 - Dryer prototype build													
Q12 - Testing of prototype dryer													