

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Oil-Less Compressor/Rapid-Cast, High-Speed Centrifugal Compressor Impeller

Oak Ridge National Laboratory Patrick Geoghegan, PhD geogheganpj@ornl.gov

Project Summary

Timeline:

Start date: 10/1/2018

Planned end date: 9/30/2020

Key Milestones

- 1. M9-20% cost savings
- 2. M15–Success of internal channel build

Key Partners:

Budget:

Total Project \$ to Date:

- DOE: \$193K
- Cost share: N/A

Total Project \$:

- DOE: \$450K
- Cost share: N/A

Project Outcome:

A new rapid casting approach to impeller manufacturing that removes many of the postcasting processes such as machining and brazing and introduces active flow control (AFC) to prevent the surge/stall phenomenon that can destroy a high-speed centrifugal compressor impeller.

Team

Patrick Geoghegan, PhD Principal Investigator

Amy Elliot, PhD Manufacturing Demonstration Facility

ORNL

Jerry Thiel Director of Additive Manufacturing Center and Metal Casting Center

University of Northern Iowa

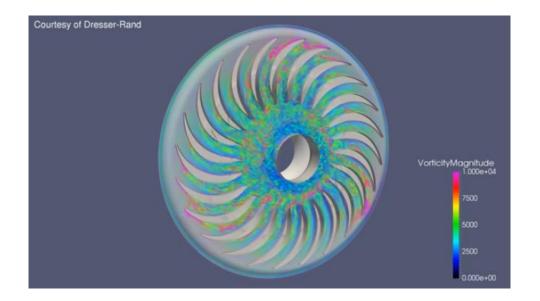
Pennsylvania State University

Steve Lynch Shuman Family Early Career Assistant Professor, Department of Mechanical Engineering

> Alexander J. Rusted PhD Student

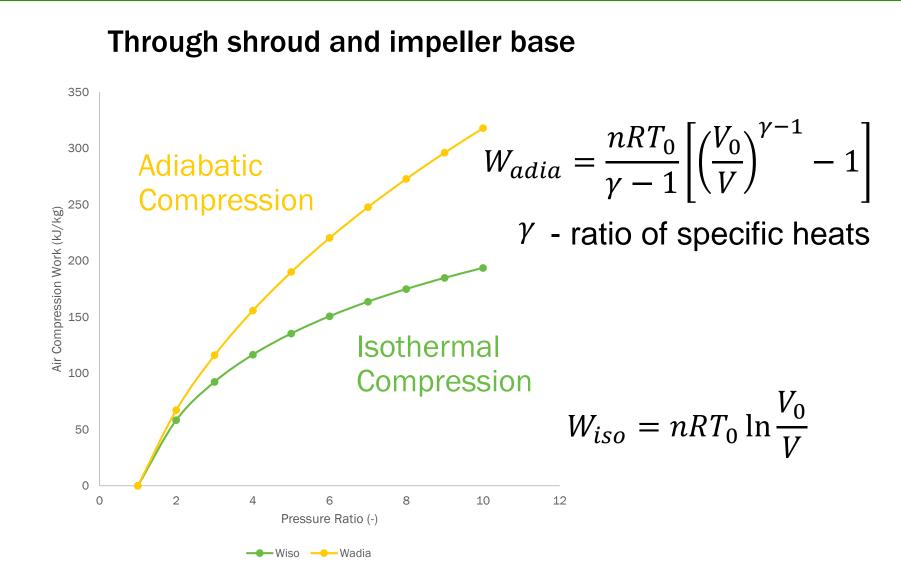
Challenge

- According to the 2016 Annual Energy Outlook, the United States consumed 2.15 Quads in delivered energy in cooling, refrigeration, and freezing across the residential and commercial sectors
- Oil provides lubrication, cooling, and leak tightness
- Heat exchangers fouled by compressor oil leads to 10–15% loss in performance over time
- Alternative refrigerants could require larger flow rates not possible by scroll compressors


Emerging Technologies Multi-Year Program Plan

- By 2030, develop cost-effective technologies capable of reducing a building's energy use per square foot by 45%, relative to 2010
- Fund early-stage R&D

Approach — Small-Scale Centrifugal Compressors


Characteristics:

- Oil-free
- Surge/stall, mitigated through AFC
- Towards isothermal compression

- Onset of rotating stall in a turbomachinery diffuser/return channel.
- FINE/Open unsteady DES solved on the OLCF Titan supercomputer
- Numeca-Dresser Rand Rotating Stall Animation (https://youtu.be/emCgbNc4ZLQ)

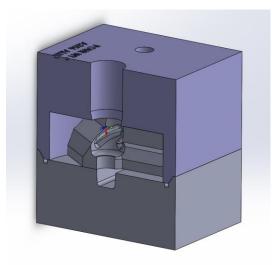
Approach — Internal Flow/Cooling Channels

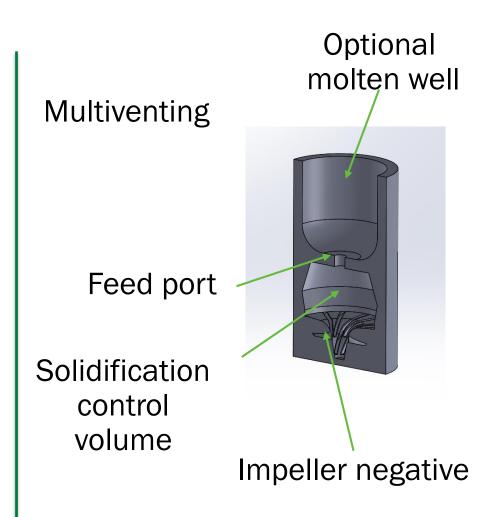
Approach — Manufacturing Approaches

Impellers are traditionally sand investment casted

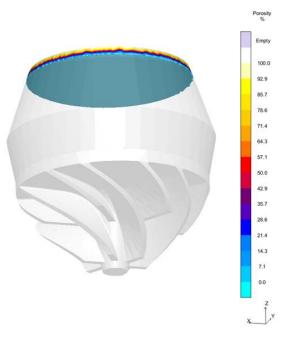
Brazing of parts

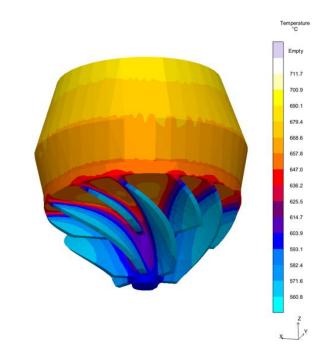
- 3D printing of impellers is possible but there might be issues with
 - \circ Porosity
 - Surface finish
 - \circ Cost

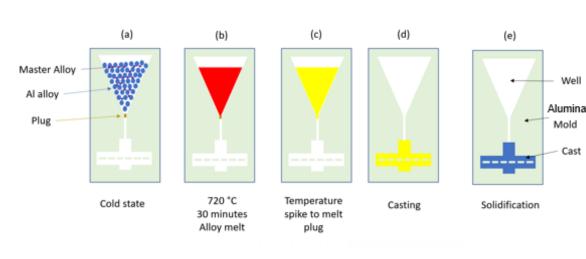

Approach – Rapid Casting


ExOne Binder Jetting 3D printer

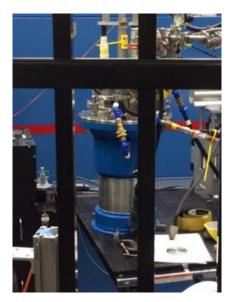
Printing sand

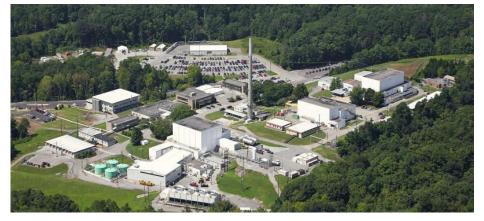

Characteristics


- Casting into a 3D-printed mold
 - Avoids porosity issues
 - Enables complexity (impeller and shroud)
 - $_{\circ}$ Surface finish (Ra 3 to 6 $\mu m)$
 - Cost per part and productivity
 - AFC
 - Castable aluminum cerium alloy


Approach — Modeling of the Casting Process

- Commercial codes
- Open source (OpenFOAM)
- Multiventing analysis





Approach — Validation Through Neutron Imaging

Non-invasive

Boron-containing master alloy

Impact

- 20% cost savings on impeller manufacturing by combining shroud and impeller
- Adaptable to alternative refrigerants
- Potential for 36% energy savings in conversion from isentropic to isothermal compression
- 0.24 Quads of energy savings through oil-less compression

Project Plan

Milestone Name/Description		Criteria		Planned Date	End	Milestone type (Annual Regular, Quarterly progress)		
Report on the manufacturing of a shrouded impeller			Benefits outwe limitations	3/31/20	019	Regular		
AFC channel design			Complete AFC	9/30/2019		Regular		
Report on success of AFC channel fabrication			Channels must be clear, and pressure drop reasonable		12/31/2019		Regular	
Report on rapid casting of full scale AFC shrouded impellers			Confidence in scale-up		9/30/2020		Regular	
Go/No-Go Decision	Description	Criteria		Date		Actions Go: No-Go:		
Define the cost savings versus investment casting, CNC machining and brazing	Report on Cost Comparison of traditional manufacturing to rapid casting	Must provide a 20% cost savings over traditional manufacturing		6/30/2019				
Design Scale-up	Define size limitations, surface finish, balance, etc.	No bottleneck issues in scale- up		3/31/2020				

Progress

- Go! @ ORNL memorandum of understanding signed with Penn State
- Contract in place
- Costing analysis under way
- Casting into the AccuCast 3Dprinted mold, unshrouded part scheduled to be neutron imaged
- Sample environment design is progressing

Stakeholder Engagement

Danfoss

Remaining Project Work

- New project
- Immediate future
 - Examine rapid-casted shrouded impeller
 - Print sand molds with annular passages of varying diameter to test for channel stability

Distant future

 Neutron Imaging of in situ rapid casting integrated impeller design and build

Thank You

Oak Ridge National Laboratory Patrick Geoghegan, PhD geogheganpj@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: DOE Total \$450K Variances: Project delayed until 3/1/2019 due to contract negotiations Cost to Date: \$115K Additional Funding: None

Budget History								
FY 2016-2018 (past)			2019 rent)	FY 2020 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$85k	\$0	\$140	\$0	\$225	\$0			

Project Plan and Schedule

Project Schedule									
Project Beginning: 10/1/2018		Completed Work							
Projected End: 9/30/2020		Active Task (in progress work)							
		Milestone/Deliverable							
		Milestone/Deliverable (Actual)							
		FY2019			FY2020				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past Work									
1.1 Report on the manufacturing of a shrouded impeller									
Current/Future Work									
1.2 Go/No-Go Cost comparison of traditional manufacturing to rapid casting									
2.1 Channel fabrication									
3.1 Go/No-Go Design scale-up									
3.2 Rapid casting of full scale AFC shrouded impeller									