New project in FY19

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

End-Use Load Profiles for the U.S. Building Stock

Performing Organizations:

Principal Investigator:

National Renewable Energy Laboratory (NREL) Lawrence Berkeley National Laboratory Argonne National Laboratory

Eric Wilson, Senior Research Engineer, NREL 303.275.4676 | eric.wilson@nrel.gov

Project Summary

<u>Timeline</u>:

Start date: 10/1/2018

Planned end date: 9/30/2021

Key Milestones

- Technical Advisory Group established; 12/31/18
- Year 1 Report; Go/No-go Decision 8/1/19

Budget:

Total Project \$ to Date:

- DOE: \$3,000,000
- Cost Share: \$0

Total Project \$:

- DOE: \$9,000,000
- Cost Share: \$1,000,000*

Key Partners:

Northeast Energy Efficiency Partnerships

Electric Power Research Institute

Northwest Energy Efficiency Alliance

New York State Energy Research and Development Authority

Massachusetts Clean Energy Center

Project Outcome:

The project is focused on producing a nationally comprehensive, validated dataset of end-use load profiles for the U.S. building stock.

This dataset is needed to enhance understanding of the timesensitive value of energy efficiency and energy flexibility, so that utilities, states, and cities continue to invest in "**improving the energy efficiency of our homes and buildings**" (*EERE Goal 3; BTO Multi-Year Program Plan FY16–FY20, p11*).

Beyond the dataset, the project will result in validated modeling capabilities for evaluating how building technologies can "**enable the integration of clean electricity into a reliable**, **resilient, and efficient grid**" (*EERE Goal 5; BTO Multi-Year Program Plan FY16–FY20, p11*).

*anticipated

Challenge

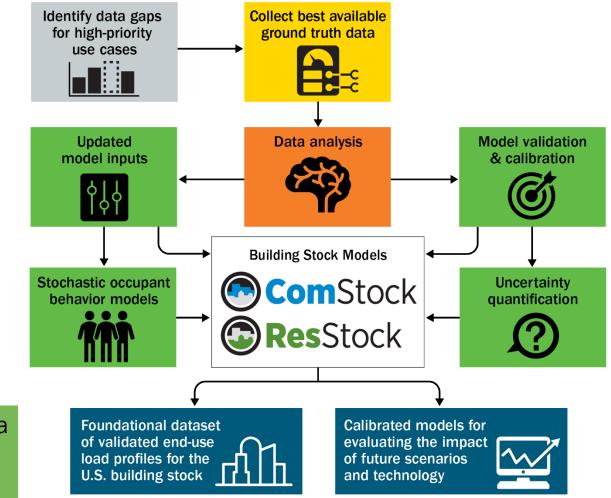
Existing end-use load profiles

- are often outdated and limited to certain regions and building types because of the high cost of traditional end-use sub-metering
- are insufficient for accurate evaluation of numerous emerging use cases of grid-interactive and efficient buildings

Opportunity

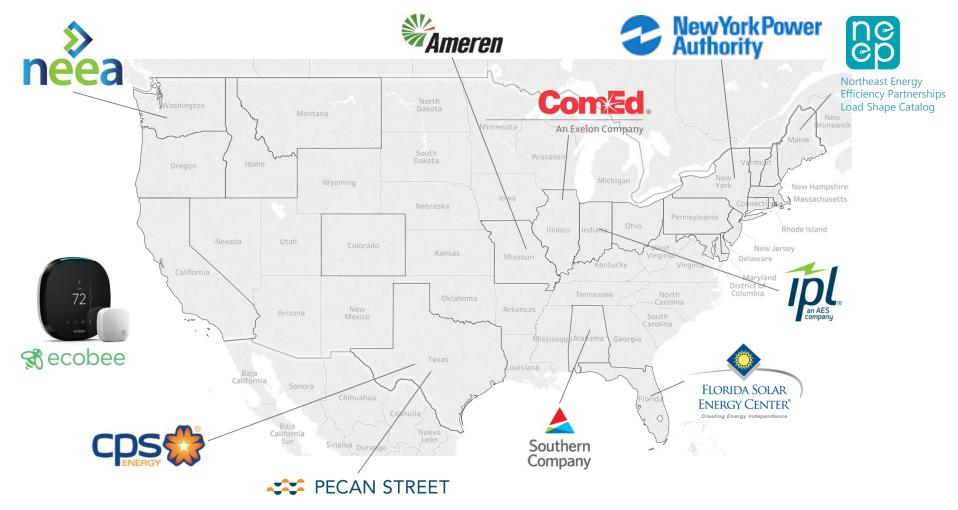
- New ResStock[™] and ComStock[™] models statistically represent energy use of U.S. buildings
- Models produce hourly end-use load profiles, <u>but calibration efforts to date</u> <u>have focused on annual energy use</u>

Source: Navigant

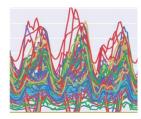

Approach

Hybrid approach combines best-available ground-truth data—

- submetering studies,
- statistical disaggregation of whole-building interval meter data, and
- other emerging data sources


—with the reach, costeffectiveness, and granularity of physics-based and data-driven building stock modeling capabilities

The novel approach delivers a nationally-comprehensive dataset **at a fraction of the historical cost**.



Approach – Examples of Data Sources

Acquired or actively pursuing 20 (and growing) data sources from around the U.S. – Selected examples:

Approach – Example Data Source Usage

Load research data

- 192 customer class profiles from 30 utility companies
- 60-min interval data
- E.g., residential w/o electric heat, large general service

ComEd Anonymous Data Service

- All ~4 million meters in northern Illinois
- 30-min interval data
- Meters tagged with ZIP/ZIP+4 code and customer class

Residential Building Stock Assessment: Metering Study (2011)

- 100 homes in northwest U.S.
- 15-min sub-metered circuits
- Home audit data available from larger RBSA study

Value derived through analysis

- Sector total ground truth
- Non-weather dependent load shape/magnitude
- Cooling/heating season length/magnitude

All listed above, plus

- Diversity in customer base load and cooling/heating patterns
- Statistical conditional demand disaggregation (if paired with saturation surveys)
- Demographic correlations

All listed above, plus

- End-use ground truth data for one region (some end-uses transferrable to other regions)
- Correlations with audit data

Proposal Team

Organization

Key Team Members

Andrew

Wilson (PI) Parker (Co-PI) Adhikari

Eric

Dr. Jianli

Chen

Rawad

El Kontar

Kim

Dr. Anthony Dr. Sammy Dr. Janghyun Elaina Fontanini Houssainy

Dr. Janet Present Reyna

Lawrence Berkeley **National Laboratory**

Natalie Mims Frick (Co-PI)

Dr. Rajendra

Lisa Schwartz

Dr. Tianzhen Hong

Dr. Lieko

Earle

Han Li

Tom Eckman

Northeast Energy Efficiency **Partnerships**

Dr. Ralph Muehleisen

Dr. Qi Li

Elizabeth Titus

Claire Miziolek

Proposal Team - Expertise

Organization

Domain expertise

Building energy modeling (BEM) Building stock modeling Residential occupant behavior

ResStock

ComStock

Lawrence Berkeley National Laboratory Time-sensitive valuation of EE Utility integrated resource planning Commercial occupant behavior

Northeast Energy Efficiency Partnerships Uncertainty quantification

Load profile conditional demand analysis Electric utility engagement

Northeast regional stakeholder engagement Northeast regional data sources

Impact

A BTO survey found that end-use load profiles are the **most essential data resource** currently missing for time-sensitive valuation of energy efficiency.

End-use load profiles

 are needed by the utility industry to accurately account for EE and DR in forecasting, resource planning, distribution system planning, and other applications.

Project results

- Will be used by BTO GEB work moving forward
- Will prioritize DOE R&D investments (e.g., via Scout)

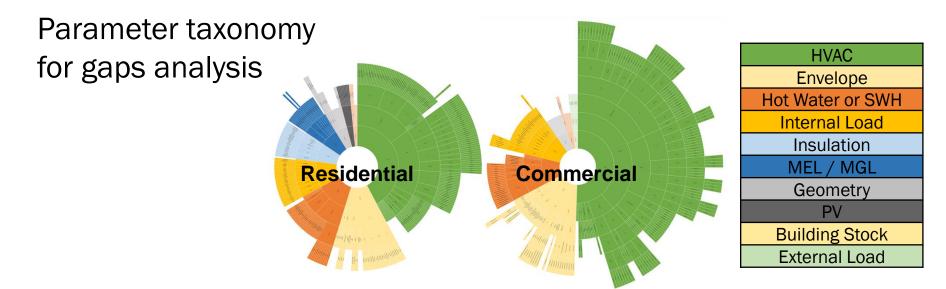
Project results will likely be used by electric utilities across the U.S.

Significant utility industry interest demonstrated by 65 advisory group members contributing their time to the project

Foundation for understanding **demand flexibility**—and its relationship to EE—across the building stock

Progress – Stakeholder Engagement

- Created technical advisory group with 65 members representing utilities, regulators, experts and consultants, energy efficiency regional organizations and vendors.
 - Held first technical advisory group meeting in November 2018.
 - Convened second (in-person) technical advisory group meeting in March 2019—focused on identifying market needs, use cases and data gaps.



In-kind participation by 65 advisory group members

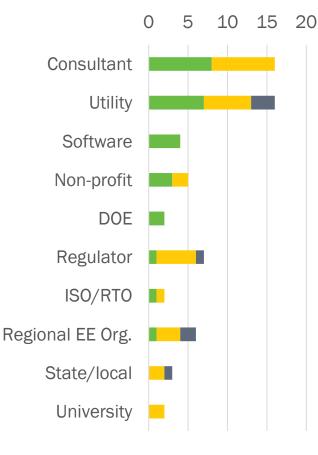
Progress – Use Cases, Data Gaps

Use Cases

- Identified approximately 75 use cases for end-use load profiles
- Data Gaps
- Categorized approximately 500 high-level inputs for ResStock/ComStock,
 - documented the data sources currently being used for each,
 - identified potential data sources for future improvements, and
 - identified the highest priority input data gaps

Progress – Occupancy Modeling

Occupancy Modeling


- Completed initial literature review on residential stochastic occupant behavior models
- Progress developing commercial building stochastic occupant behavior models for several commercial building types

Progress – Stakeholder Use Case Prioritization

Attendees of members at March 5–6 Meeting

- In-person attendence
- Call-in (registered)
- Did not attend

List 3 use cases that are high priority for you

10

20

30

0

Progress – Top Use Case Data Requirements (DRAFT)

Indicates requirement typically outside status quo End-Stochastic Electrical								
Use Case	Rank	Time resolution	Geographic resolution			Characteristics		
Utility program design	1	Hourly or peak day	Service territory	Yes	No	Real power		
Forecasting and resource planning	2	Hourly or peak day	Service territory	Yes	No	Real power		
Distribution/Non-wires alternatives	3	15-min or smaller	Distribution feeder	Yes	Yes	Real, reactive power, voltage		
Emerging technology evaluation	4	Depends on rates	Service territory or larger	Yes	Yes	Depends on application		
Codes/standards/policy analysis	5	15-min to hourly	State, climate zone	Yes	Yes	Real power		
Program implementation/targeting	6	Hourly	Service territory or smaller	Yes	No	Real power		
Electrification impact analysis	6	Hourly	Service territory or smaller	Yes	Yes	Real power		
Rate design & analysis	6	15-min	Service territory or smaller	No	Yes	Real power		
Valuation of grid services	9	Hourly or smaller	Feeders to markets	Yes	Yes	Depends on application		
EE/DR in electricity markets	10	15-min to hourly	Service territory or larger	Yes	Yes	Real power		
Emissions reduction analysis	10	Hourly	Service territory or larger	Yes	No	Real power		
Regional/national energy planning	10	Hourly	Regional or national	Yes	No	Real power		
New building design/rating	10	15-min to hourly	Weather station	Yes	Yes	Real power		
Solar/storage economic analysis	10	1-min	Weather station	No	Yes	Real power		
Resilience analysis	10	1-min to hourly	Distribution feeder or smaller	Yes	Yes	Depends on application		
Equity improvements	10	Hourly	Service territory or smaller	Yes	Yes	Real power		

Stakeholder Engagement

Stakeholder Engagement

Technical Advisory Group in-person meeting March 5–6, 2019 **40 non-lab attendees** (including 13 on phone)

"This is a good start"

"This was as good as it gets for engaging people across different locations and disciplines."

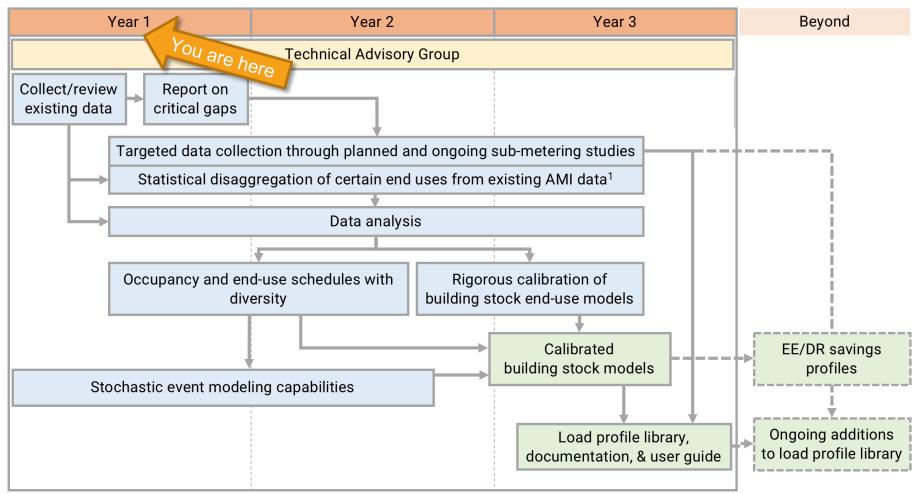
"It was very useful to engage in breakout sessions to develop a broader understanding on how people will use these."

"This format worked well."

"Phone attendance was nearly seamless and worked really well. Nice work. Good collaboration in breakouts."

"Break out groups were great. Good discussion and facilitation. The lead in presentations were good too."

"...the conversations were ultimately very thought provoking."


Remaining Project Work

Immediate next steps:

- Report on use cases and critical data gaps

- Continue identifying and pursuing data sources

- Continue developing stochastic occupancy modeling

¹ For example, conditional demand analysis, or inverse (changepoint/degree day) models (KEMA 2009)

Thank You

Performing Organizations:

Principal Investigator:

National Renewable Energy Laboratory (NREL) Lawrence Berkeley National Laboratory Argonne National Laboratory

Eric Wilson, Senior Research Engineer, NREL 303.275.4676 | eric.wilson@nrel.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$3,000,000 per year for three years, across three national labs **Variances:** None

Cost to Date: *Costing through March 16

Labs: \$290,400* (NREL), \$131,500* (LBNL), \$7,653 (ANL) Partners: \$0 (NEEP), \$0 (EPRI)

Additional Funding:

EPRI's utility partners: \$150,000 NYSERDA: \$250,000 (funding NEEP activities) MassCEC: \$500,000 (funding NEEP activities) ComEd: \$30,000 Various in-kind contributions for participation in advisory group

Budget History									
10/1/2018 – FY 2019 (current)		FY 2020 (planned)	FY 2021 – 9/30/2021 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$3,000,000	\$435,000	\$3,000,000	\$280,000	\$3,000,000	\$285,000				

Project Plan and Schedule

The pinture surfi

Project Schedule													
Project Start: 10/1/2018			Completed Work										
Projected End: 9/30/2021			Active Task (in progress work)										
	Milestone/Deliverable (Originally Planned)					I)							
		Milestone/Deliverable (Actual)											
		FY2019 FY2020						FY2021					
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past Work													
NREL Milestone: TAG established													
Current/Future Work													
NREL Milestone: Data requirements understood													
NREL Milestone: Data gaps report													
LBNL Milestone: Data gaps report													
NREL Milestone: Data gaps decision (Go/No-Go)													
LBNL Milestone: Data gaps decision (Go/No-Go)													
ANL Milestone: Data gaps decision (Go/No-Go)													
LBNL Milestone: Commercial stochastic loads													
NREL Milestone: Commercial stochastic loads													
NREL Milestone: Residential stochastic loads													
NREL Milestone:* Complete uncalibrated model													
ANL Milestone:* Characterize uncertainty													
NREL Milestone:* Complete calibrated model													
NREL Milestone:* Publish end-use load profile dataset													
LBNL Milestone:* Publish documentation and user guide													

*Anticipated future year milestone