

Grid-Interactive Efficient Buildings:

HVAC&R, Water Heating, Appliance, and Commercial Refrigeration Technologies
2019 Peer Review

Building Technologies Office

April 16, 2019

Agenda

- 1. Introduction
 - a) Report Series Overview
 - b) Background
 - c) Scope
 - d) Grid Services Definitions
 - e) Load Shapes
- 2. Evaluation of Technologies
- 3. R&D Challenges and Opportunities

Please submit feedback and suggestions to:

Matt Guernsey

matt.guernsey@navigant.com

+1 (781) 270 - 8358

GEB Technical Report Series Overview

The GEB Technical Report Series will help inform and guide BTO's R&D portfolio and serve as a foundational resource for the larger building research community.

Reports will be published in Summer 2019 in partnership with Navigant, NREL, PNNL

GEB Technical Report Series:

- Overview
- Heating, Ventilation, & Air Conditioning (HVAC);
 Water Heating; and Appliances
- Lighting
- Building Envelope & Windows
- Sensors & Controls, Data Analytics, and Modeling

1 Establish Frameworks

- Defines grid-interactive efficient buildings and demand flexibility
- Establishes potential grid services and some basic requirements for buildings to provide flexibility
 - Assess Flexibility Potential
- Evaluate state-of-the-art and emerging building technologies based on ability to provide grid services
- Considers implementation attributes

Discuss Research Opportunities

 Identify major research challenges of technologies with significant potential for grid benefits and opportunities for additional technology-specific R&D.

Grid-Interactive Efficient Buildings: Background

Grid-interactive efficient buildings (GEB): energy efficiency and flexibility to benefit occupants, owners and the grid.

Grid-Interactive Efficient Commercial Buildings

Scope

- HVAC&R, water heating, appliances, comm. refrigeration
- Equipment and related, onsite controls

Out of scope In scope **Onsite Devices** Offsite Devices and **Equipment Controls** Mechanical Componentry (Compressors, heat Home Hub Communication Standards Offsite Onsite exchangers, etc.) Communications Communications (wired or wireless) (wired or wireless) Internal Controls, Sensors **Utility Communication** and Algorithms Smart Thermostat Mechanisms Internal Communications Building/Energy Module **Utility Controls** Management System Other Componentry Other Onsite Sensors and Controls

Methodology

The GEB analysis followed four steps

Identify Valuable Technologies

Evaluate Potential

Characterize Challenges

Characterize R&D Opportunities

Methods for Buildings to Provide Services

Four primary ways buildings providing grid value:

Load Shapes: Electric

Well-suited loads for grid services:

- Dryers, clothes washers and dishwashers
 finite operation cycle
- Space conditioning easy to precool/heat
- Water heating easy to pre-heat

24

Load Shapes: Electric cont.

Less-ideally-suited loads for grid services:

- Ventilation and refrigeration
 - Maintain conditions continually somewhat less flexible
 - Careful planning and design to provide grid value safely

Load Shape: Natural Gas

Natural Gas demand response (DR) is of increasing interest

- Network under strain during cold spells
- DR alleviates strain via shifting/shedding
- Fuel switching DR must consider electric grid impact

Technology Evaluation Overview

- Evaluated technologies based on grid value
- Considered market limitations to assess Overall GEB Potential

High Potential	Medium Potential	Low Potential
 [HVAC] Smart Thermostats [HVAC] Liquid Desiccant Thermal Energy Storage [HVAC] Thermal Energy Storage	 [HVAC] Modulating HVAC [HVAC] Advanced Controls for HVAC Equipment with Embedded Thermostats [Appliances] Modulating Low-Power Mode Clothes Dryer [Appliances] Advanced Dishwasher /Clothes Washer Controls [Appliances] Connected Refrigerator /Freezer Advanced Controls [Comm. Refrigeration] Commercial Refrigeration Thermal Storage [Comm. Refrigeration] Advanced Controls for Commercial Refrigeration [Cross Cutting] Embedded Batteries 	[HVAC] Hybrid Evaporative Cooling [HVAC] Dual-Fuel HVAC [Water Heating] Dual-Fuel Water Heaters [Cross-Cutting] DC Buildings/Equipment
 [Natural Gas] Thermal Energy Storage [Natural Gas] Smart Water Heater Controllers [Natural Gas] Smart Thermostats 		[Natural Gas] Dual-Fuel HVAC[Natural Gas] Dual-Fuel Water Heaters

Technology Evaluation: HVAC

HVAC Technologies	Efficiency	Shed Load	Shift Load	Modulate Load	Overall GEB Potential
Smart Thermostats	√	√	✓		High
Liquid Desiccant Thermal Energy Storage	√		✓		High
Thermal Energy Storage for Heating/Cooling			✓		High
Modulating HVAC	✓	✓	✓	✓	Med
Advanced Controls for HVAC Equipment with Embedded Thermostats		✓	✓		Med
Hybrid Evaporative Cooling		✓	✓		Low
Dual-Fuel HVAC		√			Low

Technology Evaluation: Water Heating & Appliances

Water Heating Technologies		Shed Load	Shift Load	Modulate Load	Overall GEB Potential
Smart Connected Water Heater Controller		✓	√	✓	High
Dual-Fuel Water Heater		√			Low
Appliance Technologies	Efficiency	Shed Load	Shift Load	Modulate Load	Overall GEB Potential
Modulating Low-Power-Mode Clothes Dryer			✓	√	Med
Advanced Dishwasher/Clothes Washer Controls			✓		Med
Connected Refrigerator/Freezer Advanced Controls			✓		Med

Technology Evaluation: Comm. Refrig., & Natural Gas

Commercial Refrigeration Technologies		Shed Load	Shift Load	Modulate Load	Overall GEB Potential
Commercial Refrigeration Thermal Storage			√		Med
Advanced Controls for Commercial Refrigeration			✓		Med
Natural Gas Technologies		Efficiency	Shed Load	Shift Load	Overall GEB Potential
Thermal Energy Storage for Heating/Cooling				✓	High
Smart Connected Water Heater Controller			✓	✓	High
Smart Thermostats		✓	✓	✓	High
Dual-Fuel HVAC			✓		Low
Dual-Fuel Water Heaters			√		Low

Technology Evaluation: Cross-Cutting

Cross-Cutting Technologies	Efficiency	Shed Load	Shift Load	Modulate Load	Overall GEB Potential
Building Energy Management Systems (BEMS)	√	✓	✓		High
Home Hubs	✓	✓	✓		High
Plug-and-Play GEB Equipment		✓	✓		High
Grid-Sensing, Self-Dispatching Equipment				✓	High
Embedded Batteries		✓	✓		Med
DC Buildings/Equipment	✓				Low

We considered the following attributes to identify barriers:

Reliability

Resiliency

System readiness

Usability

Manufacturability

Human Health

Environment

Cost-Effectiveness

Identified areas for R&D include:

Produc	t costs	Self-disp equip	oatching ment	Installation costs		Appliance retrofits	
Embedded	d batteries	Battery algori		High-density thermal storage			ation DR ithms
	Smart algo GEB co	•		wer factor (ement	Heat pur heaters	np water s for DR	

Reduce GEB Product Costs

- Challenge:
 - Cost premium

- Opportunities (for all tech):
 - Develop novel materials and manufacturing processes
 - Support standardization of communications and controls

Develop Self-Dispatching Equipment for Stable Grid Control

- Challenge:
 - Issue detection delay increases with distance from the source, leading to desynchronized equipment response
- Opportunities (for selfdispatching equipment):
 - Evaluate and model grid impacts
 - Develop control strategies

Reduce Installation Cost for GEB Equipment

Challenge:

 High cost installation due to commissioning/setup labor

Opportunities (for all tech):

- Support development of a standard data model for utility tariffs and schedules for equipment programming
- Develop plug-and-play connectivity for new buildings or retrofits

Enable Plug-and-Play GEB Appliance Retrofits

• Challenge:

 Only new (select) appliances are Plug-and-Play GEB capable

Opportunities (for appliances):

 Develop inexpensive retrofit Plugand-Play GEB packages for appliances

Support Embedded Battery
Technology Development for GEB
Services

- Challenge:
 - Embedded battery potential is poorly characterized
- Opportunities (for embedded batteries):
 - Determine technical requirements for embedded batteries
 - Investigate alternative electric storage technologies
 - Conduct techo-economic analysis

Support the Development of Battery Control Algorithms

- Challenge:
 - Batteries control optimization is key to effective GEB dispatch
- Opportunities (for embedded batteries):
 - Develop control algorithms for batteries

Support Development of High-Density Thermal Energy Storage

- Challenge:
 - Large space requirements for storage
- Opportunities (for thermal energy storage technologies):
 - Improve thermal energy storage density
 - Develop ways to package thermal energy storage solutions

Develop Algorithms to Control Demand Response in Refrigeration

- Challenge:
 - Refrigerated food may be negatively impacted by load shifting/shedding
- Opportunities (for refrigeration control technologies):
 - Support the development of refrigeration control algorithms

Develop and Evaluate Smart Algorithms for Centralized GEB Controls

Challenge:

- Limited capabilities of centralized controls to optimize building response to grid signals
- Opportunities (for BEMS, home hubs and smart thermostats):
 - Research smart algorithms for centralized controllers
 - Research artificial intelligence applications to improve control algorithms performance

Voltage Support via Power Factor Management

Challenge:

 Poorly characterized algorithms and potential for voltage support from buildings

• Opportunities (for BEMS):

 Investigate BEMS-based control strategies to provide voltage support

Heat Pump Water Heaters for Demand Response

• Challenge:

- Heat pump water heater performance degrades at high temps (and temps may be limited)
- Opportunities (for smart connected water heater controllers):
 - Model and test optimal approaches for hybrid electric resistance/heat pump water heaters to provide demand response
 - Develop high-temp-capable HPWH

Questions/Discussion

Please submit feedback and suggestions to:

Matt Guernsey

matt.guernsey@navigant.com

+1 (781) 270 - 8358

Appendix

Grid Services

(Grid Services	Potential Avoided Power/Grid Cost				
Generation	Generation: Energy	Generation variable operating costs; startup/shutdown costs				
Genei	Generation: Capacity	Capital costs for new generating				
>-	Contingency Reserves ¹	Generation variable operating costs and opportunity costs associated with providing contingency reserves				
Ancillary	Frequency Regulation	Generation variable operating costs and opportunity costs ² associated with providing frequency regulation				
∢	Ramping	Generation variable operating costs; startup/shutdown costs				
very	Non-wires Alternatives	Capital costs for transmission & distribution equipment upgrades				
Delivery	Voltage Support	Capital costs for voltage control equipment				
² E.g., not se	² E.g., not selling power in order to be ready for up-regulation					

E.g., not selling power in order to be ready for up-regulation