

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Integrated HVAC Control Methods for Mini-Split Heat Pumps in Existing Homes

University of Central Florida, Florida Solar Energy Center Karen Fenaughty, Research Analyst and Eric Martin, Principal Investigator kfenaughty@fsec.ucf.edu, martin@fsec.ucf.edu

Project Summary

Timeline:

Start date: October 1, 2017

Planned end date: September 30, 2019

Key Milestones:

- 1. Document persistence of supplemental minisplit savings. December 2018
- Demonstrate ability to maintain whole house comfort with supplemental mini-split. December 2018
- 3. Complete design of integrated controller. December 2018

Budget:

Total Project \$ to Date (March 31, 2019):

- DOE: \$163,358
- Cost Share: \$21,124

Total Project \$:

- DOE: \$283,479
- Cost Share: \$31,495

Key Partners:

Cooling and Heating Solutions

Project Outcome:

Develop and demonstrate an integrated controller that coordinates operation of an existing central space conditioning system with a single, centrally located mini-split heat pump. Control algorithm minimizes EUI by prioritizing mini-split runtime, and invokes central system to ensure comfort in bedroom zones and during peak load. *Project goal is to enhance space conditioning energy savings beyond simple addition of a mini-split by 10%, contributing to MYPP Goal of reducing EUI by* 40% in existing homes.

Team

FLORIDA SOLAR ENERGY CENTER" Creating Energy Independence

Eric Martin

Karen Fenaughty

Danny Parker

Tom Cummings

PhD

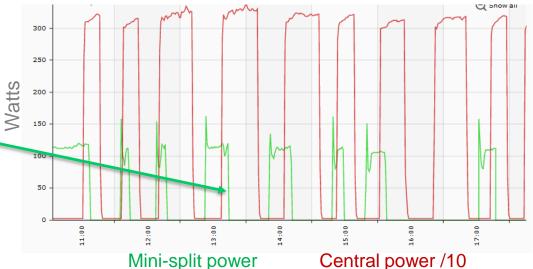
Lixing Gu, **Bereket** Nigusse, PhD

- Involved in several prior studies investigating performance of variable capacity space conditioning systems.
- Data and participants from one such prior study leveraged for the current project.
- Instrumental in developing, field testing, and overcoming market barriers for many new high performance housing technologies.
- EnergyPlus expertise.

- Cost sharing partner, providing mini-split heat pumps and in-kind support related to:
 - Equipment selection
 - Available control platforms/strategies
 - Commercialization

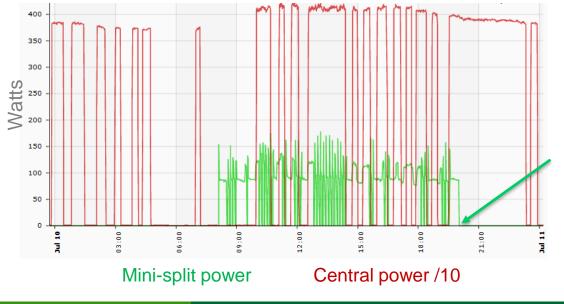
Challenge

- Need for cost effective equipment retrofit to reduce space conditioning energy when existing system is not at end of life.
- Provide capacity modulation to accommodate a staged deep retrofit's steadily declining conditioning loads.
 - Without the potential discomfort of installing an under-sized central system (unable to meet thermostat set points) at the beginning of the retrofit.
 - Without the potential discomfort associated with keeping the progressively oversized central system (short cycling and poor moisture control).

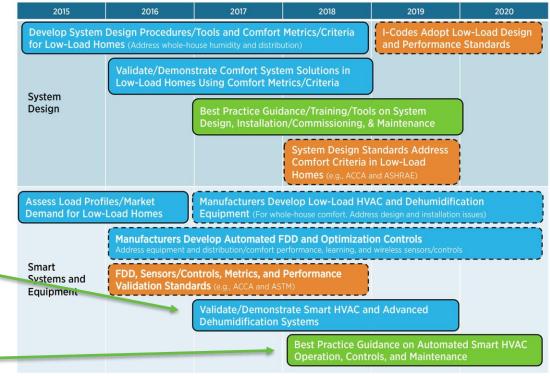


- Building America Research to Market Plan: "Validate/Demonstrate Smart HVAC and Advanced Dehumidification Systems."
 - Market availability of systems "capable of efficiently and consistently conditioning low load homes."

Bigger Challenge – Optimize Energy Savings


Mini-split not addressing as much of the conditioning load as it could and competing thermostats cause mini-split to short-cycle.

We aim to reduce central system runtime by maximizing mini-split capacity and runtime.


Too much mini-split runtime can cause limited central system engagement creating nighttime comfort issues in bedrooms not directly served . Occupants often respond by turning mini-split off at night.

We aim to maximum night-time mini-split use, while keeping bedrooms comfortable.

Approach

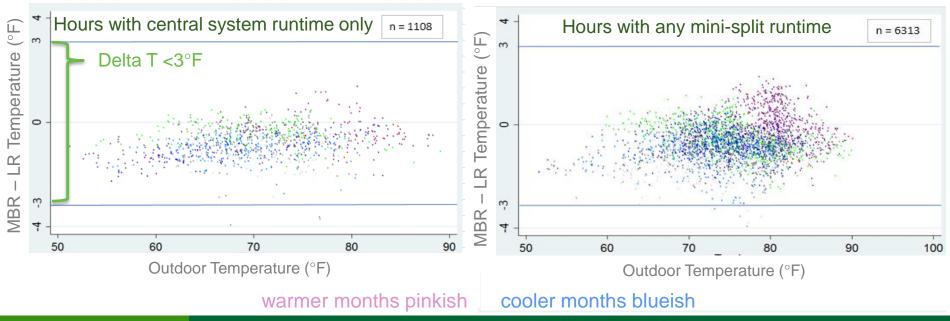
- Early stage research to develop and demonstrate an integrated controller that coordinates operation of an existing central space conditioning system with a single, centrally located mini-split heat pump.
- Evaluating and experimenting with 13 homes from previous Building America project with supplemental 1-ton mini-split.
- "Validate/demonstrate smart HVAC and advanced dehumidification systems."
- "Best practice guidance on automated smart HVAC."

B. Optimal Comfort Systems for Low-Load Homes

Impact

- Market for ductless heat pumps continues to grow at 10%-30% per year.
- Part of this growth is due to incentives available for peak demand reduction and electrification of heating for future renewable integration.
- Modeling efforts and pilot studies show potential for 20-80% heating/cooling savings from addition of supplemental mini-split.
 - Savings vary widely based on baseline system and occupant interaction.
- Larger scale program evaluations show that mini-splits only used for 50-60% of potential operating hours.
 - Finding: Lack of a control decreases potential energy savings by 25-75%.
- Desire to structure future incentives according to presence of advanced control.
 - NYSERDA is funding a controls demonstration project.
 - Draft control specifications already emerging.
- Results from past FSEC Building America study indicate ~\$300 price point for an integrated controller, assuming it generates an additional 10% savings beyond simply adding a mini-split.

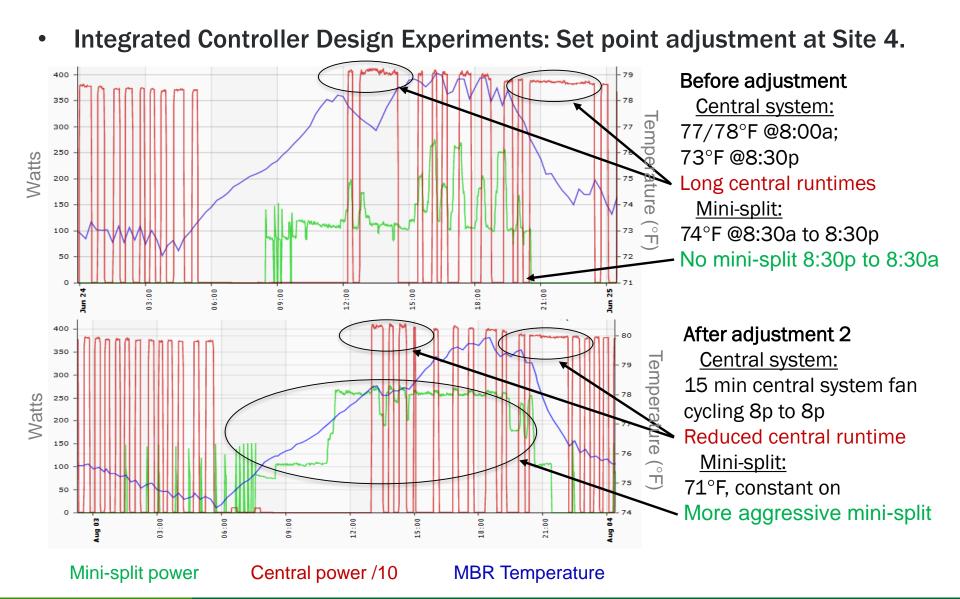
- Mid stage in our research.
- Manually optimized set points in 3 homes w/1-ton Panasonic system.
- Installed new 1-ton Mitsubishi systems in 3 homes.
- Evaluating an integrated controller in 4 homes.


ID	Advanced Control Method	Year Built	Living Area (ft ²)	AC Size (tons)	Manual J Peak Load (tons)	AC SEER
1	None	1993	1856	3.5	3.5	13
2	None	2006	2328	5.0	4.5	13
3	Optimized Set Points	1984	1594	3.0	3.0	12
4	Optimized Set Points	1982	2231	4.0	3.0	13
5	None	1981	1628	3.5	2.5	13
6	None	1980	1946	3.5	3.0	14
7	Integrated Control	1986	1978	3.5	3.5	15
8	Optimized Set Points & Integrated Control	1995	2050	5.0	2.5	12
9	None	1999	1390	2.5	2.0	10
10	None	1987	1520	3.0	2.0	15.5
13	Integrated Control	1988	2554	5.0	4.5	16
-14	Integrated Control	1981	1559	3.0	2.5	17
15	Optimized Set Points & Integrated Control	1991	1951	4.0	n/a	17

- Evaluated persistence of cooling energy savings from simple addition of a supplemental mini-split.
 - Evaluated in 3 sites with 2-3 year history of supplemental mini-split.

Site	Post Year 1	Post Year 2	Post Year 3
4	30%	23%	24%
8	38%	51%	41%
15	28%	34%	N/A

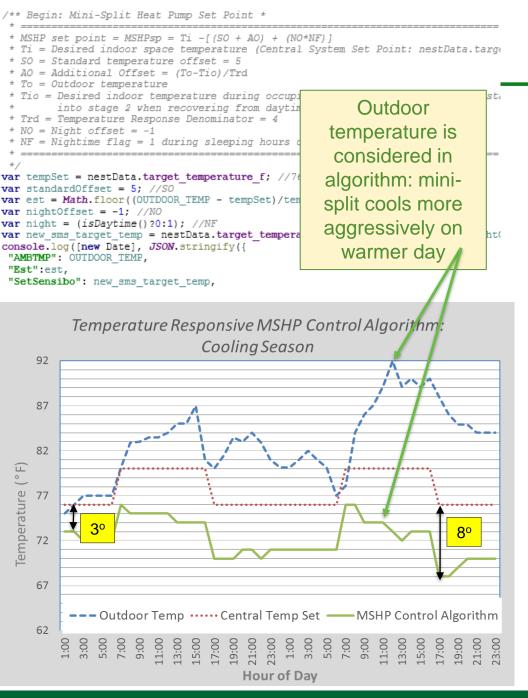
- Very short-term evaluation of cooling energy savings at 3 new installations: 14%, 34%, and 39%.
- Evaluated whole house comfort: Short term pre vs. post supplemental mini-split.
 - Evaluated cooling season room-to-room thermal distribution pre and post supplemental mini-split in 3 sites (July and August).
 - Used ACCA Manual RS guidelines: Cooling hour Delta T not to exceed 3°F.
 - Find excursions are almost non-existent both pre and post; exception was in unoccupied spare bedroom and observed in both pre and post.


- Ability to maintain whole house comfort: Long-term by runtime condition.
 - Evaluated one year of cooling season room-to-room thermal distribution.
 - Used ACCA Manual RS guidelines: Cooling hour Delta T not to exceed 3°F.
 - Difference between master bedroom and living room Delta T against outdoor temperature.
 - No clear differences in room-to-room Delta T with and without mini-split.
 - The largest excursions occur when the central system is running and in cooler months.
 - Rarely does the Delta T exceed the ACCA Manual RS guideline of 3°F, whether the supplemental mini-split was running or not.

- Integrated Controller Design Experiments: Manual Set Point Optimization
 - Experimented with 3 homes from previous project.
 - Adjusted set points of both systems to reduce overall HVAC energy.
 - Introduced central system fan cycling during sleeping hours to compensate for lack of distribution when only mini-split is running.
 - Example: Initially 17% cooling energy savings, comfort adjustment yielded 11%.

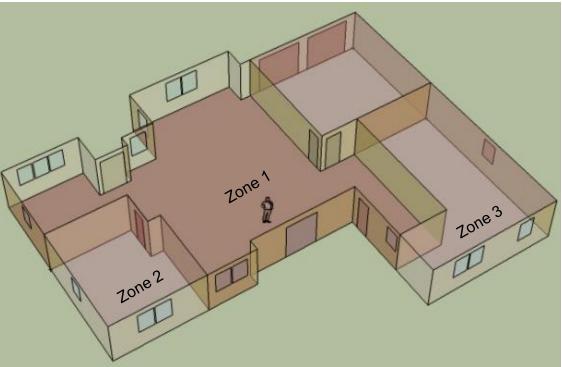
Site 4	Mini-split (kWh/Day)	Central (kWh/Day)	Total HVAC (kWh/Day)	Living Room Temp (°F)	Outdoor Temp (°F)
Pre-Intervention	1.6	34.9	36.4	74.5	82.8
Adjustment 1	1.9	28.4	30.3	74.8	82.1
Adjustment 1 Net	(0.4)	6.5	6.1	(0.3)	0.7
Adjustment 1 Savings	(24%)	19%	17%		
Adjustment 2	2.2	30.4	32.6	74.7	81.8
Adjustment 2 Net	(0.6)	4.5	3.8	(0.2)	0.9
Adjustment 2 Savings	(40%)	13%	11%		

- Re-evaluated at 3 months found 8% and 10% cooling energy savings and rare Delta T temperature excursions above 3°F, and no worse with adjustment.
 - 16% cooling energy savings at a third site with intentional zoning.



- Integrated Controller Design: Hardware
 - Smart thermostat platform
 - Nest for central system
 - Sensibo for mini-split
 - Homeowner enters desired comfort into Nest as a programmable set point schedule.
 - Nest remote temperature sensor used in master bedroom.
 - Nest set to read master bedroom temperature during sleeping hours, and activate central system to maintain nightime bedroom comfort.

- Integrated Controller Design: Software Algorithm
 - Read Nest set point schedule and automatically adjust the mini-split set point.
 - Read/write to/from smart thermostats through server via thermostat internet connectivity and open API.
 - Daytime: central system only operates if central zone set point cannot be satisfied with mini-split.
 - Sleeping hours: Bedroom set point first attempted to be satisfied with min-split. If not 1) invoke fan cycling, 2) invoke central system.



Stakeholder Engagement

- Developing Building America Solution Center content geared towards southeastern contractors covering design, installation, and control considerations for supplemental mini-split.
- Engaging with utilities, regional efficiency organizations, and manufacturers through coordination and contributions to other ongoing projects to increase impact:
 - PNNL: modeling and lab home experimentation of integrated controls in the northwest.
 - NYSERDA: 12 home demonstration project of integrated controls in northeast.

Remaining Project Work

- Complete Controller Experiments
 - Finalize controller algorithm and implement, test and refine.
 - Collect data and evaluate results for energy savings and comfort.
- Conduct Central System End of Life Simulations
 - Develop multi-zone EnergyPlus model and conduct simulations to estimate life cycle cost considerations of choices for central system replacement.
- Capacity?
- Efficiency?
- Ducted vs. ductless?

Thank You

FLORIDA SOLAR ENERGY CENTER[™] Creating Energy Independence

University of Central Florida, Florida Solar Energy Center Eric Martin, PI and Karen Fenaughty, Co PI <u>martin@fsec.ucf.edu</u>, <u>kfenaughty@fsec.ucf.edu</u>

REFERENCE SLIDES

Project Budget: Budget Period 1 funds spent on IRB and Research Plan development and approval, benchmarking baseline performance, and controller design. Budget Period 2 funds are being spent on controller refinement and validation.

Variances: No variances from the original planned budget.

Cost to Date: 58% of the budget has been expended to date (3/31/2019).

Additional Funding: A portion of the cost share has been provided by Mitsubishi.

Budget History											
October 2017 – December 2018 (Budget Period 1 - past)		Septeml (Budget	y 2019– ber 2019 FY 2020 – N/A Period 2 - (planned)								
DOE \$163,409	Cost-share \$18,148			DOE	Cost-share						

Project Plan and Schedule

Initial delay in Institutional Review Board protocol review caused slippage of two early stage milestones. Installation of new mini-splits intentionally delayed for more baseline data collection.

	Integrated HVAC Control Methods for Supplemental High Efficiency Mini-Split Heat Pumps in Existing Homes (Oct '2017-Sep '2019)	2	2017-0	Q4	20	018-Q	21	20	18-Q2		2018-	Q3		2018-0	Q 4	20)19-Q	1	20	19-Q2		2019-0	23
	Project Month	1	2	3	4	5	6	7	8	9 10) 11	12	13	14	15	16	17	18	19	20 2	1 22	23	2
WBS	Calendar Month	10	11		1	2	3	4	5	6 7		9	10		12	1	2	3	4	5 6			9
ask 1.0	Finalization of Field Test Plan	≻	≻	►	≻	≻	>																
M1.1	Obtain IRB and DOE Approval of Field Test Plan			•	_																		
M1.2	Identify 3 field study sites and secure homeowner agreements for new MSHP and fan cycler installations.				+-		->	۲															
	Complete ACCA Manual J load calculation and characterization of existing and new MSHP sites.						٠																
ask 2.0	Evaluation of Existing Supplemental MSHP Installations				≻	≻	≻	≻	> 3	> >	· >	≻	≻	≻	≻	≻	≻	>					
M2.1	Complete analysis of historical multi-room T&RH dataand homeowner interviews on controller set points and comfort issues.								٠														
M2.2	Complete new data collection and reevaluation of energy savings and T/RH distribution.																	•					
M2.3	Finalize fan cycling experiments and complete data collection, reevaluate multi-room temperature and relative humidity data.																				٠		
ask 3.0	Evaluation of 3 Additional Supplemental MSHP with Central System Fan Cyclers				۲	۶	۲	۶	> 3	> >	· >	۶	۶	۶	۶	۶	۲	۶	۶	> >	>	I	
M3.1	Complete multi-room T&RH monitoring sensor installation.						•																
M3.2	Complete baseline energy use evaluation and multi-room T&RH distribution evaluation, and complete installations of new MSHP's, fan cyclers, and data logging equipment.								+		* •												
M3.3	Complete design and installation of two-stage automated controller to interface with the supplemental MSHP and the central system to prepare for Phase II experiments.														•	→	٠						
G/NG #1	Complete Phase I analysis demonstrating approximately 25-30% cooling energy savings and comfort improvement over non-fan cycling homes. Begin Phase II data collection.														♦ ♦#1								
	Complete Phase II data collection with new controller and reevaluate multi-room T/RH data and annual energy savings.																				٠		
	Building America Support Activities	≻	≻	≻	≻	≻	≻	≻	> 3	> >	· >	≻	≻	≻	≻	≻	≻	≻	>	> >	• >	≻	≻
M4.1	Complete year 1 support activities.											•											
M4.2	Complete year 2 support activities.																						
ask 5.0	Evaluation of Central System End-of-Life Options	≻	≻	≻	۶	≻	۶	≻	> 3	> >	· >	≻	≻	≻	≻	≻	۶	۶	>				
M5.1	Complete Energy Plus analysis of all sites and evaluation of multi MSHP options.																		+>	•			
ask 6.0	Development of Final Deliverables												≻	≻	≻	≻	≻	۶	۶	> >	• >	≻	≻
M6.1	Finalize BASC content and complete final report.																						